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FIGURE 3
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FIGURE 4
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FIGURE 5
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FIGURE 6
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FIGURE 7
Speed During Qutage no 3
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FIGURE 7 (continued)
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FIGURE 8
Speed During Outage no 4
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FIGURE 8 (continued)

Altitude During Outage no 9

70

80

-20 [
4
g _30 ‘\‘ﬂ“%*\\‘ ‘f;
-ﬁ ..40 TP "‘m..ﬁ'% .................................. ‘2/{ ................ |
s P
s \ s
= ST e ensrere
& 50 o e N e I e C
- NovAtel Ref.
------- MPF 3D RISS
-60 0 50 100 150 200 250
Time in Seconds
Pitch During Outage no 4
-1 ‘ ! :
WD i T e
A% /
2 ;
Q o
£
£
2
£
NovAtel Ref.
T MPF 3D RISS
50

10

30

40

Time in Seconds



U.S. Patent Nov. 8, 2016 Sheet 12 of 65 US 9,488,480 B2
FIGURE 9
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FIGURE 9 (continued)
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FIGURE 10
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FIGURE 11
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FIGURE 12
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FIGURE 13
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FIGURE 15
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FIGURE 17
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FIGURE 23
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FIGURE 24
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FIGURE 25
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FIGURE 26
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FIGURE 28
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FIGURE 29
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FIGURE 32
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FIGURE 35
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FIGURE 36
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FIGURE 38
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FIGURE 45
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1
METHOD AND APPARATUS FOR
IMPROVED NAVIGATION OF A MOVING
PLATFORM

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent Ser. No.
13/037,130, entitled, “Method and Apparatus for Improved
Navigation of a Moving Platform,” and filed on Feb. 28,
2011, the entire contents of which are incorporated herein as
is set forth in full.

FIELD OF THE INVENTION

The present invention relates to positioning and naviga-
tion systems adapted for use in environments with good,
degraded, or denied satellite-based navigation signals.

BACKGROUND OF THE INVENTION

The positioning of a moving platform, such as, wheel-
based platforms/vehicles or individuals, is commonly
achieved using known reference-based systems, such as the
Global Navigation Satellite Systems (GNSS). The GNSS
comprises a group of satellites that transmit encoded signals
and receivers on the ground, by means of trilateration
techniques, can calculate their position using the travel time
of the satellites’ signals and information about the satellites’
current location.

Currently, the most popular form of GNSS for obtaining
absolute position measurements is the global positioning
system (GPS), which is capable of providing accurate posi-
tion and velocity information provided that there is sufficient
satellite coverage. However, where the satellite signal
becomes disrupted or blocked such as, for example, in urban
settings, tunnels and other GNSS-degraded or GNSS-denied
environments, a degradation or interruption or “gap” in the
GPS positioning information can result.

In order to achieve more accurate, consistent and unin-
terrupted positioning information, GNSS information may
be augmented with additional positioning information
obtained from complementary positioning systems. Such
systems may be self-contained and/or “non-reference based”
systems within the platform, and thus need not depend upon
external sources of information that can become interrupted
or blocked.

One such “non-reference based” or relative positioning
system is the inertial navigation system (INS). Inertial
sensors are self-contained sensors within the platform that
use gyroscopes to measure the platform’s rate of rotation/
angle, and accelerometers to measure the platform’s specific
force (from which acceleration is obtained). Using initial
estimates of position, velocity and orientation angles of the
moving platform as a starting point, the INS readings can
subsequently be integrated over time and used to determine
the current position, velocity and orientation angles of the
platform. Typically, measurements are integrated once for
gyroscopes to yield orientation angles and twice for accel-
erometers to yield position of the platform incorporating the
orientation angles. Thus, the measurements of gyroscopes
will undergo a triple integration operation during the process
of yielding position. Inertial sensors alone, however, are
unsuitable for accurate positioning because the required
integration operations of data results in positioning solutions
that drift with time, thereby leading to an unbounded accu-
mulation of errors.
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Another known complementary “non-reference based”
system is a system for measuring speed/velocity information
such as, for example, odometric information from a odom-
eter within the platform. Odometric data can be extracted
using sensors that measure the rotation of the wheel axes
and/or steer axes of the platform. Wheel rotation information
can then be translated into linear displacement, thereby
providing wheel and platform speeds, resulting in an inex-
pensive means of obtaining speed with relatively high
sampling rates. Where initial position and orientation esti-
mates are available, the odometric data are integrated thereto
in the form of incremental motion information over time.

Odometry has short-term accuracy, however, odometric
data can contain errors such as those that may arise from
wheel slippage. If odometry is to be used alone to obtain a
positioning solution (i.e. using it to get both translational
speed of the platform as well as rotational motion), the
integration of motion information including errors such as
wheel slippage will result in the small errors increasing
without bound over time because of integration operations.
For instance, it is known that orientation errors can create
large positional errors that increase with the distance trav-
eled by the platform.

Given that each positioning technique described above
(INS/GNSS/Speed Information) may suffer loss of informa-
tion or errors in data, common practice involves integrating
the information/data obtained from the GNSS with that of
the complementary system(s). For instance, to achieve a
better positioning solution, INS and GPS data may be
integrated because they have complementary characteristics.
INS readings are accurate in the short-term, but their errors
increase without bounds in the long-term due to inherent
sensor errors. GNSS readings are not as accurate as INS in
the short-term, but GNSS accuracy does not decrease with
time, thereby providing long-term accuracy. Also, GNSS
may suffer from outages due to signal blockage, multipath
effects, interference or jamming, while INS is immune to
these effects.

Although available, integrated INS/GNSS is not often
used commercially for low cost applications because of the
relatively high cost of navigational or tactical grades of
inertial measurement units (IMUs) needed to obtain reliable
independent positioning and navigation during GNSS out-
ages. Low cost, small, lightweight and low power consump-
tion Micro-Electro-Mechanical Systems (MEMS)-based
inertial sensors may be used together with low cost GNSS
receivers, but the performance of the navigation system will
degrade very quickly in contrast to the higher grade IMUs in
areas with little or no GNSS signal availability due to
time-dependent accumulation of errors from the INS.

Speed information from the odometric readings, or from
any other source, may be used to enhance the performance
of the MEMS-based integrated INS/GNSS solution by pro-
viding velocity updates, however, current INS/Odometry/
GNSS systems continue to be plagued with the unbounded
growth of errors over time during GNSS outages.

One reason for the continued problems is that commer-
cially available navigation systems using INS/GNSS inte-
gration or INS/Odometry/GNSS integration rely on the use
of traditional Kalman Filter (KF)-based techniques for sen-
sor fusion and state estimation. The KF is an estimation tool
that provides a sequential recursive algorithm for the esti-
mation of the state of a system when the system model is
linear.
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As is known, the KF estimates the system state at some
time point and then obtains observation “updates” in the
form of noisy measurements. As such, the equations for the
KF fall into two groups:

Time update or “prediction” equations: used to project
forward in time the current state and error covariance
estimates to obtain an a priori estimate for the next step,
or

Measurement update or “correction” equations: used to
incorporate a new measurement into the a priori esti-
mate to obtain an improved posteriori estimate.

While the commonly used Linearalized KF (LKF) and
Extended KF (EKF) can provide adequate solutions when
higher grade IMUs are utilized by linearizing the originally
nonlinear models, the KF generally suffers from a number of
major drawbacks that become influential when using low
cost MEMS-based inertial sensors, as outlined below.

The INS/GNSS integration problem at hand has nonlinear
models. Thus, in order to utilize the linear KF estimation
techniques in this type of problem, the nonlinear INS/GNSS
model has to be linearized around a nominal trajectory. This
linearization means that the original (nonlinear) problem be
transformed into an approximated problem that may be
solved optimally, rather than approximating the solution to
the correct problem. The accuracy of the resulting solution
can thus be reduced due to the impact of neglected nonlinear
and higher order terms. These neglected higher order terms
are more influential and cause error growth in the position-
ing solution, in degraded and GNSS-denied environments,
particularly when low cost MEMS-based IMUs are used.

Further, the KF requires an accurate stochastic model of
each of the inertial sensor errors, which can be difficult to
obtain, particularly where low cost MEMS-based sensors
are used because they suffer from complex stochastic error
characteristics. The KF is restricted to use only linear
low-order (low memory length) models for these sensors’
stochastic errors such as, for example, random walk, Gauss-
Markov models, first order Auto-Regressive models or sec-
ond order Auto-Regressive models. The dependence of the
KF on these inadequate models is also a drawback of the KF
when using low cost MEMS-based inertial sensors.

As a result of these shortcomings, the KF can suffer from
significant drift or divergence during long periods of GNSS
signal outages, especially where low cost sensors are used.
During these periods, the KF operates in prediction mode
where errors in previous predictions, which are due to the
stochastic drifts of the inertial sensor readings not well
compensated by linear low memory length sensors’ error
models and inadequate linearized models, are propagated to
the current estimate and summed with new errors to create
an even larger error. This propagation of errors causes the
solution to drift more with time, which in turn causes the
linearization effect to worsen because of the drifting solution
used as the nominal trajectory for linearization (in both LKF
and EKF cases). Thus, the KF techniques suffer from
divergence during outages due to approximations during the
linearization process and system mis-modeling, which are
influential when using MEMS-based sensors.

In addition, the traditional INS typically relies on a full
inertial measurement unit (IMU) having three orthogonal
accelerometers and three orthogonal gyroscopes. This full
IMU setting has several sources of error, which, in the case
of low-cost MEMS-based IMUs, will cause severe effects on
the positioning performance. The residual uncompensated
sensor errors, even after KF compensation, can cause posi-
tion error composed of three additive quantities: (i) propor-
tional to the cube of GNSS outage duration and the uncom-
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pensated horizontal gyroscope biases; (ii) proportional to the
square of GNSS outage duration and the three accelerom-
eters uncompensated biases, and (iii) proportional to the
square of GNSS outage duration, the horizontal speed, and
the vertical gyroscope uncompensated bias.

Another traditional solution, known as Dead reckoning,
which can be used to provide a two dimensional (2D)
positioning solution for land vehicles using a single axis
gyroscope vertically aligned with the vehicle and the speed
readings from an odometer. Dead reckoning relies on an
assumption that vehicles will primarily move on the hori-
zontal plane. However, this solution is also plagued with
certain drawbacks, namely: (i) it is a 2D solution that does
not estimate the altitude nor the vertical component of
velocity; and (ii) assuming that the vehicle is moving in the
horizontal plane, it disregards the tilt angles of the vehicles
and subsequently the off-plane motion which causes two
main issues: (a) the assumption that the gyroscope vertically
aligned to the vehicle also has its axis in the pure vertical
(i.e. normal to the East-North plane), which is a problem
because its axis is actually tilted, will affect the accuracy of
the azimuth calculation, and (b) the assumption that the
vehicle’s traveled path is horizontal, which is a problem
because the vehicle and its path are actually tilted, will cause
an error in the horizontal position estimation.

The foregoing drawbacks of the KF have resulted in
increased investigation into alternative methods of INS/
GNSS integration models, such as, for example, nonlinear
artificial intelligence techniques. However, there is a need
for enhancing the performance of low-end systems relying
on low cost MEMS-based INS/GNSS sensors and for miti-
gating the effect of all sources of errors to provide a more
adequate navigation solution. Further, there is also a need for
more advanced modeling techniques that are capable of
modeling the stochastic sensor errors instead of the linear
low memory length models currently used.

SUMMARY

A navigation module for providing an INS/GNSS navi-
gation solution for a moving platform is provided. A method
of using the navigation module to determine an INS/GNSS
navigation solution is also provided.

The module comprises a receiver for receiving absolute
navigational information about the moving platform from an
external source (e.g., such as a satellite), and producing an
output of navigational information indicative thereof.

The module further comprises means for obtaining speed
or velocity information and producing an output of infor-
mation indicative thereof.

The module further comprises an assembly of self-con-
tained sensors capable of obtaining readings (e.g., such as
relative or non-reference based navigational information)
and producing an output indicative thereof for generating
navigational information. The sensor assembly may com-
prise accelerometers, gyroscopes, magnetometers, barom-
eters, and any other self-contained sensing means that are
capable of generating navigational information. More spe-
cifically, where the means for generating speed or velocity
information (e.g., such as an odometer), is capable of
providing uninterrupted information to the module, the
sensor assembly may comprise at least two accelerometers
and one gyroscope. Alternatively, where the means for
generating speed or velocity information is subject to inter-
ruption (e.g. such as platforms having transceivers that
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enables them to get their own Doppler-derived velocities),
the sensor assembly may comprise three accelerometers and
three gyroscopes.

Finally, the module further comprises at least one proces-
sor, coupled to receive the output information from the
receiver, sensor assembly and means for obtaining speed or
velocity information, and operative to integrate the output
information to produce a navigation solution. The at least
one processor may operate to provide a navigation solution
by using the speed or velocity information to decouple the
actual motion of the platform from the readings of the sensor
assembly. The processor may be programmed to utilize a
filtering technique, such as a nonlinear filtering technique
(e.g., a Mixture Particle Filter) or a linear filtering technique
(e.g., a Kalman Filter), and the integration of the information
from different sources may be done in either loosely or
tightly coupled integration schemes. The filtering algorithm
may utilize a system model and a measurement model,
wherein the system and measurement model used by the
algorithm may depend upon whether or not the speed or
velocity information available to the module can be inter-
rupted. The system and measurement models utilized by the
present navigation module provides new combinations of
sensor assembly and speed or velocity information and
enhanced navigation solutions relating to a moving plat-
form, even in circumstances of degraded or denied GNSS
information.

A method for determining an improved navigation solu-
tion is further provided comprising the steps of:

a) receiving absolute navigational information from an
external source and producing output readings indicative
thereof;

b) obtaining readings relating to navigational information
at self-contained sensors within the module and producing
an output indicative thereof;

¢) obtaining speed or velocity information and producing
output readings indicative thereof; and

d) providing at least one processor for processing and
filtering the navigational information and speed or velocity
information to produce a navigation solution relating to the
module, wherein the at least one processor is capable of
utilizing the speed or velocity readings to decouple the
actual motion of the platform from the sensor information.

The module may be optionally enhanced to provide
advanced modeling of inertial sensors stochastic drift, and
may further comprise an optional routine to derive measure-
ment updates for such drift.

The module may be optionally programmed to detect and
assess the quality of GNSS information received by the
module and, where degraded, automatically discard or dis-
count the information.

The module may be optionally enhanced to automatically
switch between a loosely coupled integration scheme and a
tightly coupled integration scheme.

The module may be optionally enhanced to automatically
assess measurements from each external source, or GNSS
satellite visible to the module in case of a tightly coupled
integration scheme, and detect degraded measurements.

The module may be optionally enhanced to calculate
misalignment between the sensor assembly of the module
and the platform.

The module may be optionally enhanced to perform a
backward or post-mission process to calculate a solution
subsequent to the forward navigation solution, and to blend
the two solutions to provide an enhanced backward
smoothed solution.
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The module may be optionally enhanced to perform one
or more of any of the foregoing options.

DESCRIPTION OF THE DRAWINGS

FIG. 1: A diagram demonstrating the present navigation
module as defined herein.

FIG. 2A: A flow chart diagram demonstrating one
embodiment of the present method processed by the present
navigation module of FIG. 1 (dashed lines and arrows depict
optional processing).

FIG. 2B: A flow chart diagram demonstrating the optional
post-mission embodiment of the present navigation module
and method defined herein.

FIG. 3: Road Test Trajectory in Montreal, Quebec,
Canada. Circles indicate the locations of GPS outages.

FIG. 4: Performance during GPS outage #3 of FIG. 3.

FIG. 5: Performance during GPS outage #4 of FIG. 3.

FIG. 6: Performance during GPS outage #9 of FIG. 3.

FIG. 7: Forward speed, azimuth, altitude, and pitch during
GPS outage #3 in FIGS. 3 and 4.

FIG. 8: Forward speed, azimuth, altitude, and pitch during
GPS outage #4 in FIGS. 3 and 5.

FIG. 9: Forward speed, azimuth, altitude, and pitch during
GPS outage #9 in FIGS. 3 and 6.

FIG. 10: Road Test Trajectory between Kingston and
Napanee, Ontario, Canada. Circles indicate the locations of
GPS outages.

FIG. 11: Performance during GPS outage #3 as shown in
FIG. 10.

FIG. 12: Performance during GPS outage #5 as shown in
FIG. 10.

FIG. 13: Performance during GPS outage #8 as shown in
FIG. 10.

FIG. 14: Forward speed and azimuth from NovAtel
reference during GPS outage #3 of FIGS. 10 and 11.

FIG. 15: Forward speed and azimuth from NovAtel
reference during GPS outage #5 of FIGS. 10 and 12.

FIG. 16: Forward speed and azimuth from NovAtel
reference during GPS outage #8 of FIGS. 10 and 13.

FIG. 17: The autocorrelation of gyroscope reading of the
second stationary dataset.

FIG. 18: The autocorrelation of gyroscope reading of the
second stationary dataset after removing the initial bias
offset.

FIG. 19: The gyroscope reading of the second stationary
dataset after removing the initial bias offset versus the PCI
prediction of the drift.

FIG. 20: The autocorrelation of gyroscope reading of the
second stationary dataset after removing the initial bias
offset and the PCI predicted drift.

FIG. 21: The gyroscope reading of the second stationary
dataset after removing the initial bias offset versus the AR
prediction of the drift.

FIG. 22: The autocorrelation of gyroscope reading of the
second stationary dataset after removing the initial bias
offset and the AR predicted drift.

FIG. 23: Road Test Trajectory from Montreal to Kingston.
Circles indicate the locations of GPS outages.

FIG. 24: Performance during GPS outage #8 shown in
FIG. 23.

FIG. 25: Forward speed and azimuth from Novatel ref-
erence during GPS outage #8 shown in FIGS. 23 and 24.

FIG. 26: Performance during GPS outage #9 shown in
FIG. 23.

FIG. 27: Forward speed and azimuth from Novatel ref-
erence during GPS outage #9 shown in FIGS. 23 and 26.
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FIG. 28: Performance during GPS outage #10 shown in
FIG. 23.

FIG. 29: Forward speed and azimuth from Novatel ref-
erence during GPS outage #10 shown in FIGS. 23 and 28.

FIG. 30: Road Test Trajectory in Toronto, Coming from
North to South into downtown then leaving from the South-
East.

FIG. 31: Zoom-in on first portion of degraded GPS
performance in Toronto trajectory of FIG. 30.

FIG. 32: Zoom-in on second portion of degraded GPS
performance in Toronto trajectory of FIG. 30.

FIG. 33: Zoom-in on third and hardest portion of
degraded GPS performance in Toronto trajectory of FIG. 30.

FIG. 34: Zoom-in on a section with complete blockage
under the Gardiner Expressway in Toronto trajectory of FI1G.
30.

FIG. 35: Comparison between Mixture PF/AR120 and
KF/GM both with gyroscope drift update and automatic
detection of GPS degraded performance of FIG. 30.

FIG. 36: Road Test Trajectory around Kingston, Ontario,
Canada area. Circles indicate the locations of GPS outages.

FIG. 37: Number of satellites visible to the NovAtel
OEM4 receiver during the Kingston Trajectory.

FIG. 38: Average RMS position error over the ten 60-sec-
ond outages in Kingston trajectory with different numbers of
satellites visible (3, 2, 1, and 0).

FIG. 39: Average maximum position error over the ten
60-second outages in Kingston trajectory with different
numbers of satellites visible (3, 2, 1, and 0).

FIG. 40: Performance during GPS outage #5 as shown in
FIG. 36.

FIG. 41: Performance towards the end of GPS outage #5
as shown in FIG. 36.

FIG. 42: Forward speed and azimuth from Novatel ref-
erence during GPS outage #5 as shown in FIGS. 36 and 40.

FIG. 43: Performance during GPS outage #7 as shown in
FIG. 36.

FIG. 44: Performance towards the end of GPS outage #7
as shown in FIG. 43.

FIG. 45: Forward speed and azimuth from Novatel ref-
erence during GPS outage #7 as shown in FIGS. 36 and 43.

FIG. 46: Road Test Trajectory in Toronto that starts and
ends in the North, having the downtown area in the south of
the trajectory.

FIG. 47: Zoom in on the downtown portion of the Toronto
trajectory shown in FIG. 46.

FIG. 48: Number of GNSS satellites (GPS+GLONASS)
visible to the NovAtel OEMV-1G receiver during the
Toronto trajectory shown in FIG. 46.

FIG. 49: Number of GPS-only satellites visible to the
NovAtel OEMV-1G receiver during the Toronto trajectory
shown in FIG. 46.

FIG. 50: Zoom in on the downtown portion of the Toronto
trajectory shown in FIG. 46 showing the degraded GPS
performance and the performance of the proposed naviga-
tion solution.

FIG. 51: More detailed view on the downtown portion of
the Toronto trajectory shown in FIG. 46 showing the
degraded GPS performance and the performance of the
proposed navigation solution.

FIG. 52: Road Test Trajectory in Houston, Tex.

FIG. 53: One outage in a road covered by dense trees
during the Houston trajectory of FIG. 52.

FIG. 54: Different outages when moving at slow speed in
the vicinity of a building with some roof top canopies during
the Houston trajectory of FIG. 52.
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FIG. 55: An outage when passing under an overpass
during the Houston trajectory of FIG. 52.

FIG. 56: Road Test Trajectory in Downtown Toronto, a
slightly zoomed in portion of trajectory shown in FIG. 30.

FIG. 57: Comparisons of the forward and backward
proposed solutions, with GPS, and reference in a portion of
downtown Toronto shown in FIG. 52 with severe GPS
degradations and blockages.

FIG. 58: Comparisons of the forward and backward
solutions, with GPS, and reference in another portion of
downtown Toronto shown in FIG. 52 with severe GPS
degradations and blockages.

FIG. 59: Comparisons of the forward and backward
solutions, with GPS, and reference in the portion of the
downtown Toronto shown in FIG. 52 with the worst GPS
degradations and blockages.

FIG. 60: Comparisons of the forward and backward
solutions, with GPS, and reference in a complete blockage
under Gardiner Expressway in Toronto trajectory shown in
FIG. 52.

FIG. 61: Comparisons of the forward and backward
solutions, with GPS, and reference in another complete
blockage under Gardiner Expressway in Toronto trajectory
shown in FIG. 52.

Table 1: RMS horizontal position error during GPS out-
ages for Montreal trajectory shown in FIG. 3.

Table 2: Maximum horizontal position error during GPS
outages for Montreal trajectory.

Table 3: RMS altitude error during GPS outages for the
Montreal trajectory.

Table 4: Maximum altitude error during GPS outages for
Montreal trajectory.

Table 5: RMS horizontal position error during 120 sec.
GPS outages for Kingston-Napanee trajectory.

Table 6: Maximum horizontal position error during 120
sec. GPS outages for Kingston-Napanee trajectory.

Table 7: RMS altitude error during 120 sec. GPS outages
for Kingston-Napanee trajectory.

Table 8: Maximum altitude error during 120 sec. GPS
outages for Kingston-Napanee trajectory.

Table 9: RMS horizontal position error during 60 sec.
GPS outages for Montreal-Kingston trajectory.

Table 10: Maximum horizontal position error during 60
sec. GPS outages for Montreal-Kingston trajectory.

Table 11: RMS horizontal position error during 180 sec.
GPS outages for Montreal-Kingston trajectory.

Table 12: Maximum horizontal position error during 180
sec. GPS outages for Montreal-Kingston trajectory.

Table 13: Maximum position error during the 10 simu-
lated outages for different numbers of visible satellites.

Table 14: RMS and maximum position error for the
natural GPS degradation or blockage periods whose duration
exceeds 100 sec in the Toronto trajectory shown in FIG. 46.

Table 15: Crossbow 300CC IMU specifications.

Table 16: Analog Devices ADIS16405 IMU Specifica-
tions.

Table 17: Honeywell HG1700 IMU Specifications.

Table 18: Benchmarking results for different GNSS out-
ages durations with over 100. randomly simulated outages
for each duration.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

An improved navigation module and method for provid-
ing an INS/GNSS navigation solution for a moving platform
is provided. More specifically, the present navigation mod-
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ule and method for providing a navigation solution may be
used as a means of overcoming inadequacies of: (i) tradi-
tional full IMU/GNSS integration, traditional full IMU/
Odometry/GNSS integration, and traditional 2D dead reck-
oning/GNSS integration; (ii) commonly used linear state
estimation techniques where low cost inertial sensors are
used, particularly in circumstances where positional infor-
mation from the GNSS is degraded or denied, such as in
urban canyons, tunnels and other such environments.
Despite such degradation or denial of GNSS information,
the present navigation module and method of producing
navigational information may provide uninterrupted navi-
gational information about the moving platform by aug-
menting the INS/GNSS information with additional comple-
mentary sources of information. The type of complementary
information used, and how such information is used, may
depend upon the assembly of the navigation module and the
use thereof.

Navigation Module

The present navigation module 10 (FIG. 1) may comprise
means for receiving “absolute” or “reference-based” navi-
gation information 2 about a moving platform from external
sources, such as satellites, whereby the receiving means is
capable of producing an output indicative of the navigation
information. For example, the receiver means may be a
GNSS receiver capable of receiving navigational informa-
tion from GNSS satellites and converting the information
into position, and velocity information about the moving
platform. The GNSS receiver may also provide navigation
information in the form of raw measurements such as
pseudoranges and Doppler shifts.

In one embodiment, the GNSS receiver may be a Global
Positioning System (GPS) receiver, such as auBlox LEA-5T
receiver module. It is to be understood that any number of
receiver means may be used including, for example and
without limitation, a NovAtel OEM 4 dual frequency GPS
receiver, a NovAtel OEMV-1G single frequency GPS
receiver, or a Trimble Lassen SQ GPS receiver, which is a
single frequency low-end receiver with access to GPS only.

The present navigation module may also comprise self-
contained sensor means 3, in the form of a sensor assembly,
capable of obtaining or generating “relative” or “non-refer-
ence based” readings relating to navigational information
about the moving platform, and producing an output indica-
tive thereof. For example, the sensor assembly may be made
up of accelerometers 4, for measuring accelerations, and
gyroscopes 5, for measuring turning rates of the moving
platform. Optionally, the sensor assembly may have other
self-contained sensors such as, without limitation, magne-
tometers 6, for measuring magnetic field strength for estab-
lishing heading, barometers 7, for measuring pressure to
establish altitude, or any other sources of “relative” naviga-
tional information.

In one embodiment, the sensor assembly may comprise
orthogonal Micro-Electro-Mechanical Systems (MEMS)
accelerometers, and MEMS gyroscopes, such as, for
example, those obtained in one inertial measurement unit
package from Analog Devices Inc. (ADI) Model No.
ADIS16405, and may or may not include orthogonal mag-
netometers available in the same package or in another
package such as, for example model HMCS5883L from
Honeywell, and barometers such as, for example, (model
MS5803) from Measurement Specialties.

More specifically, if circumstances arise where means of
speed or velocity reading information is available and unin-
terrupted, one embodiment of the present navigation module
may comprise a sensor assembly having a reduced number
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of inertial sensors with at least two accelerometers in the
longitudinal and lateral directions of the moving platform,
and one vertical gyroscope for monitoring heading rate of
the platform. In one embodiment, the sensor assembly
comprises two accelerometers (in the longitudinal and lat-
eral directions) and one gyroscope. Optionally, other self-
contained sources of navigational information such as, for
example, magnetometers and/or barometers and/or a third
vertical accelerometer may be added.

In circumstances where means of speed reading or veloc-
ity information is available, but interrupted, another embodi-
ment of the present navigation module may comprise a
traditional sensor assembly having three accelerometers in
the longitudinal, lateral and vertical directions of the moving
platform, and between one and three vertical gyroscopes
(two for measuring roll and pitch, and a vertical gyroscope
for measuring heading). Optionally, other self-contained
sources of navigational information such as, for example,
magnetometers and/or barometers may be added.

Third, the present navigation module may comprise
means for obtaining speed and/or velocity information 8 of
the moving platform, wherein said means are capable of
further generating an output or “reading” indicative thereof.
While it is understood that such means can be either speed
and/or velocity information, said means shall only be ref-
erenced here in as speed means. In one embodiment, means
for generating speed information may comprise an odom-
eter, a wheel-encoder, shaft or motor encoder of any wheel-
based or track-based platform, or to any other source of
speed and/or velocity readings (for example, those derived
from Doppler shifts of any type of transceiver). In a pre-
ferred embodiment, the means for generating speed is the
built-in odometer of the platform. The means of obtaining
speed information, such as the odometer, may be connected
to the Controller Area Network (CAN) bus or the On Board
Diagnostics version II (OBD-II) of the platform. It should be
understood that the means for generating speed/velocity
information about the moving platform may be connected to
the navigation module via wired or wireless connection.

Finally, the present navigation module 10 may comprise
at least one processor 12 or microcontroller coupled to the
module for receiving and processing the foregoing absolute
navigation 2, sensor assembly 3 and speed information 8,
and determining a navigation solution output using the speed
information to decouple the actual motion of the platform
from the sensor assembly information. In both circum-
stances of GNSS availability and interruption, the decou-
pling of the information may occur by way of mathematical
system and measurement models that the processor is pro-
grammed to use (FIG. 2A), however the models differ in
each case, as discussed in detail below.

The navigation solution determined by the present navi-
gation module 10 may be communicated to a display or user
interface 14. It is contemplated that the display 14 be part of
the module 10, or separate therefrom (e.g., connected wired
or wirelessly thereto). The navigation solution determined in
real-time by the present navigation module 10 may further
be stored or saved to a memory device/card 16 operatively
connected to the module 10.

In one embodiment, a single processor such as, for
example, ARM Cortex R4 or an ARM Cortex A8 may be
used to integrate and process the signal information. In
another embodiment, the signal information may initially be
captured and synchronized by a first processor such as, for
example, an ST Micro (STM32) family or other known basic
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microcontroller, before being subsequently transferred to a
second processor such as, for example, ARM Cortex R4 or
ARM Cortex AS.

The processor may be programmed to use known state
estimation techniques to provide the navigation solution. In
one embodiment, the state estimation technique may be a
non-linear technique. In a preferred embodiment, the pro-
cessor may be programmed to use the non-linear Particle
Filter (PF) or the Mixture PF. In another embodiment, the
processor may be programmed to use a linear state estima-
tion technique, thereby necessitating linearization of the
information.

It is an object of the present navigation module 10 to
produce three dimensional (3D) position, velocity and ori-
entation information for any moving platform that is, for
example, wheel-based, track-based or has a source of speed
or velocity readings (whether interrupted or not), particu-
larly for circumstances where positional information from
the GNSS is degraded or denied. It is a further object that the
integrated navigation solution may be operable in land-
based wheeled platforms such as automobiles, machinery
with wheels, mobile robots and wheelchairs, or with any
non-wheeled system provided that they have means of
measuring speed or velocity (for example Doppler-derived
velocity).

It is known that there are three main types of INS/GNSS
integration that have been proposed to attain maximum
advantage depending upon the type of use and choice of
simplicity versus robustness. This leads to three main inte-
gration architectures:

1. Loosely coupled

2. Tightly coupled

3. Ultra-tightly coupled (or deeply coupled).

The first type of integration, which is called loosely
coupled, uses an estimation technique to integrate inertial
sensors data with the position and velocity output of a GNSS
receiver. The distinguishing feature of this configuration is a
separate filter for the GNSS. This integration is an example
of cascaded integration because of the two filters (GNSS
filter and integration filter) used in sequence.

The second type, which is called tightly coupled, uses an
estimation technique to integrate inertial sensors readings
with raw GNSS data (i.e. pseudoranges that can be gener-
ated from code or carrier phase or a combination of both, and
pseudorange rates that can be calculated from Doppler
shifts) to get the vehicle position, velocity, and orientation.
In this solution, there is no separate filter for GNSS, but
there is a single common master filter that performs the
integration.

For the loosely coupled integration scheme, at least four
satellites are needed to provide acceptable GNSS position
and velocity input to the integration technique. The advan-
tage of the tightly coupled approach is that less than four
satellites can be used as this integration can provide a GNSS
update even if fewer than four satellites are visible, which is
typical of a real life trajectory in urban environments as well
as thick forest canopies and steep hills. Another advantage
of tightly coupled integration is that satellites with poor
GNSS measurements can be detected and rejected from
being used in the integrated solution.

For the third type of integration, which is ultra-tight
integration, there are two major differences between this
architecture and those discussed above. Firstly, there is a
basic difference in the architecture of the GNSS receiver
compared to those used in loose and tight integration.
Secondly, the information from INS is used as an integral
part of the GNSS receiver, thus, INS and GNSS are no
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longer independent navigators, and the GNSS receiver itself
accepts feedback. It should be understood that the present
navigation solution may be utilized in any of the foregoing
types of integration.

Example 1 demonstrates one embodiment of the present
method and apparatus, where the present navigation module
10 may operate to determine a three dimensional (3D)
navigation solution by calculating 3D position, velocity and
attitude of a moving platform, wherein the navigation mod-
ule comprises absolute navigational information from a
GNSS receiver, the self-contained sensors which are
MEMS-based reduced inertial sensor systems comprising
two orthogonal accelerometers and one single-axis gyro-
scope vertically aligned to the platform, speed/velocity
information from the odometer of the moving platform, and
a processor programmed to integrate the information using
Mixture PF in a loosely coupled architecture, having a
system and measurement model, wherein the system model
is capable of utilizing the speed information to decouple the
actual motion of the platform from the readings of the
accelerometers (see Example 1).

Example 2 demonstrates another embodiment of the pres-
ent method and apparatus, wherein the present navigation
module may operate to determine a 3D navigation solution
by calculating position, velocity and attitude of a moving
platform, wherein the module comprises a full (three
orthogonal accelerometers and three orthogonal gyroscopes)
MEMS-based INS/GNSS integration using Mixture PF in a
loosely coupled architecture while using the decoupling idea
to provide extra measurement updates during GNSS avail-
ability and/or during GNSS outages (see Example 2).

Example 3 demonstrates another embodiment of the pres-
ent method and apparatus, wherein the present navigation
module may optionally be programmed to utilize an
enhanced loosely-coupled Mixture PF INS/GNSS integra-
tion, wherein the integration further comprises the advanced
modeling of inertial sensors stochastic drift together with the
derivation of updates for such drift from GNSS, where
appropriate (see Example 3).

In another embodiment, the present navigation module
may also optionally be programmed to automatically detect
and assess the quality of GNSS information, and further
provide a means of discarding or discounting degraded
information (see Example 4).

Example 5 demonstrates another embodiment of the pres-
ent method and apparatus, wherein the present navigation
module may optionally be programmed to utilize a Mixture
PF for tightly-coupled INS/GNSS integration (see Example
5—XKingston Trajectory). In another embodiment, the navi-
gation module may optionally be further programmed to
elect information between a loosely coupled and a tightly
coupled integration scheme (see Example 5—Toronto Tra-
jectory). Moreover, where tightly coupled architecture is
elected, the GNSS information from each available satellite
may be assessed independently and either discarded (where
degraded) or utilized as a measurement update (see Example
5—Toronto Trajectory).

In another embodiment, the present navigation module
may optionally be programmed to operate an alignment
procedure, which may be performed to calculate the relative
orientation (misalignment) of the housing or frame of the
sensor assembly within the frame of the moving platform,
such as, for example the technique described in Example 7.

In another embodiment, the present navigation module
may optionally be programmed to detect stopping periods,
known as zero velocity update (zupt) periods, either from the
speed or velocity readings, from the inertial sensors read-
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ings, or from a combination of both. The detected stopping
periods may be used to perform explicit zupt updates if the
speed or velocity readings are interrupted. It is to be noted
that in the case where the speed or velocity readings are
uninterrupted, no explicit zupt update is needed because it is
always implicitly performed. The detected stopping periods
may be also used to automatically recalculate the biases of
the inertial sensors.

In another embodiment, the present navigation module
may optionally be programmed to determine a low-cost
backward smoothed positioning solution for a moving plat-
form with speed or velocity readings (whether interrupted or
not), such a positioning solution might be used, for example,
by mapping systems (see FIG. 3 and Example 6). In one
embodiment, the foregoing navigation module utilizing low-
cost MEMS inertial sensors, the platform’s odometer and
GNSS along with a nonlinear filtering technique, may be
further enhanced by exploiting the fact that mapping prob-
lem accepts post-processing and that nonlinear backward
smoothing may be achieved (see FIG. 2B).

The present system and/or measurement models, relying
on the fact that the motion of the moving platform detected
from the speed or velocity readings (whether uninterrupted
or interrupted) is decoupled from the sensors assembly
readings, can be used with any type of state estimation
technique or filtering technique, for e.g., linear or non-linear
techniques alone or in combination. If the technique is
nonlinear, the nonlinear system and measurement models
are utilized as defined herein. If the state estimation tech-
nique is linear, for example a Kalman filter (KF)-based
technique, the present nonlinear system and measurement
models will be linearized to be used as the system and
measurement model inside the KF. In the latter circum-
stance, the present nonlinear system model will be used
without the process noise terms in what is called “mecha-
nization”, which provides the nominal solution around
which the linearization is performed. This mechanization
can be an unaided mechanization in case of open loop
systems or an aided mechanization that receives feedback
from the estimated solution in the case of closed loop
systems.

It is contemplated that the optional modules presented
above can be used with other sensors combinations (i.e.
different system and measurement models) not just those
used in the present navigation module relying on the fact that
the motion of the moving platform detected from the speed
or velocity readings (whether uninterrupted or interrupted) is
decoupled from the sensors assembly readings. The optional
modules are the advanced modeling of inertial sensors
errors, the derivation of possible measurements updates for
them from GNSS when appropriate, the automatic assess-
ment of GNSS solution quality and detecting degraded
performance, the automatic switching between loosely and
tightly coupled integration schemes, the assessment of each
visible GNSS satellite when in tightly coupled mode, the
alignment detection module, the automatic zupt detection
with its possible updates and inertial sensors bias recalcu-
lations, and finally the backward smoothing technique. For
example, the optional modules can be used with navigation
solutions relying on a 2D dead reckoning or a traditional full
MU

It is contemplated that the optional modules presented
above can be used with navigation solutions relying on
either linear or nonlinear state estimation techniques or
filtering techniques.

It is further contemplated that the present navigation
module comprising a new combination of speed readings
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and the inertial sensors can also be used (whether with linear
or nonlinear filtering techniques) together with modeling
(whether with linear or nonlinear, short memory length or
long memory length) and/or automatic calibration for the
errors in speed or velocity readings. It is also contemplated
that modeling (whether with linear or nonlinear, short
memory length or long memory length) and/or calibration
for the other errors of inertial sensors (not just the stochastic
drift) can be used. It is also contemplated that modeling
(whether with linear or nonlinear, short memory length or
long memory length) and/or calibration for the other sensors
in the sensor assembly (such as, for example the barometer
and magnetometer) can be used.

It is further contemplated that the other sensors in the
sensor assembly such as, for example, the barometer (e.g.
with the altitude derived from it) and magnetometer (e.g.
with the heading derived from it) can be used in one or more
of different ways such as: (i) as control input to the system
model of the filter (whether with linear or nonlinear filtering
techniques); (ii) as measurement update to the filter either by
augmenting the measurement model or by having an extra
update step; (iii) in the routine for automatic GNSS degra-
dation checking; (iv) in the alignment procedure that calcu-
lates the orientation of the housing or frame of the sensor
assembly within the frame of the moving platform.

It is further contemplated that the source of velocity
readings (in the case that these readings accept interruption)
can be the GNSS receiver itself. This means that the velocity
from the GNSS receiver and the speed calculated thereof can
be used to decouple the motion of the platform from the
sensor assembly readings. All the modules of the solution
can continue performing their work based on this. An
example of the usage of this contemplation is the ability to
calculate pitch and roll angles from a single GNSS receiver
with a single antenna together with two or three accelerom-
eters.

It is further contemplated that the hybrid loosely/tightly
coupled integration scheme option in the present navigation
module electing either way can be replaced by other archi-
tectures that benefits from the advantages of both loosely
and tightly coupled integration. Such other architecture
might be doing the raw GNSS measurement updates from
one side (tightly coupled updates) and the loosely coupled
GNSS-derived heading update and inertial sensors errors
updates from the other side: (i) sequentially in two consecu-
tive update steps, or (ii) in a combined measurement model
with corresponding measurement covariances.

It is further contemplated that the alignment calculation
option between the frame of the sensor assembly and the
frame of the moving platform can be either augmented or
replaced by other techniques for calculating the misalign-
ment between the two frames. Some misalignment calcula-
tion techniques, which can be used, are able to resolve all tilt
and heading misalignment of a free moving unit containing
the sensors within the moving platform.

It is further contemplated that the sensor assembly can be
either tethered or non-tethered to the moving platform.

It is further contemplated that the present navigation
module can use when appropriate some constraints on the
motion of the platform such as adaptive Non-holonomic
constraints, for example, those that keep a platform from
moving sideways or vertically jumping oft the ground.
These constraints can be used as an explicit extra update in
the case where the speed or velocity updates are interrupted
(i.e. when utilizing the full three accelerometers and the
three gyroscopes), or implicitly when projecting speed to
perform velocity updates. These constraints are already
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implicitly used in the case when the speed or velocity
readings are uninterrupted (i.e. when utilizing the reduced
sensor system relying on the new combination of inertial
sensors and speed or velocity readings in the system model).

It is further contemplated that the present navigation
module can be further integrated with maps (such as steep
maps, indoor maps or models, or any other environment map
or model in cases of applications that have such maps or
models available), and a map matching or model matching
routine. Map matching or model matching can further
enhance the navigation solution during the absolute naviga-
tion information (such as GNSS) degradation or interrup-
tion. In the case of model matching, a sensor or a group of
sensors that acquire information about the environment can
be used such as, for example, Laser range finders, cameras
and vision systems, or sonar systems. These new systems
can be used either as an extra help to enhance the accuracy
of the navigation solution during the absolute navigation
information problems (degradation or denial), or they can
totally replace the absolute navigation information in some
applications.

It is further contemplated that the present navigation
module, when working either in a tightly coupled scheme or
the hybrid loosely/tightly coupled option, need not be bound
to utilizing pseudorange measurements (which are calcu-
lated from the code not the carrier phase, thus they are called
code-based pseudoranges) and the Doppler measurements
(used to get the pseudorange rates). The carrier phase
measurement of the GNSS receiver can be used as well, for
example: (i) as an alternate way to calculate ranges instead
of'the code-based pseudoranges, or (ii) to enhance the range
calculation by incorporating information from both code-
based paseudorange and carrier-phase measurements, such
enhancements is the carrier-smoothed pseudorange.

It is further contemplated that the present navigation
module comprising a new combination of speed readings
and the inertial sensors (based on using the speed readings
for decoupling the motion of the moving platform from the
sensor assembly readings) can also be used in a system that
implements an ultra-tight integration scheme between
GNSS receiver and these other sensors and speed readings.

It is further contemplated that the present navigation
module can be used with various wireless communication
systems that can be used for positioning and navigation
either as an additional aid (that will be more beneficial when
GNSS is unavailable) or as a substitute for the GNSS
information (e.g. for applications where GNSS is not appli-
cable). Examples of these wireless communication systems
used for positioning are, such as, those provided by cellular
phone towers, radio signals, television signal towers, or
Wimax. For example, for cellular phone based applications,
an absolute coordinate from cell phone towers and the
ranges between the indoor user and the towers may utilize
the methodology described herein, whereby the range might
be estimated by different methods among which calculating
the time of arrival or the time difference of arrival of the
closest cell phone positioning coordinates. A method known
as Enhanced Observed Time Difference (E-OTD) can be
used to get the known coordinates and range. The standard
deviation for the range measurements may depend upon the
type of oscillator used in the cell phone, and cell tower
timing equipment and the transmission losses. These ideas
are also applicable in a similar manner for other wireless
positioning techniques based on wireless communications
systems.
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It is contemplated that the present navigation module can
use various types of inertial sensors, other than MEMS
based sensors described herein by way of example.

Without any limitation to the foregoing, the present
navigation module and method of determining a navigation
solution are further described by way of the following
examples.

EXAMPLES
Example 1

Mixture Particle Filter for Three Dimensional (3D)
Reduced Inertial Sensor System/GNSS Integration

In the present example, the navigation module is utilized
to determine a three dimensional (3D) navigation solution
by calculating 3D position, velocity and attitude of a moving
platform. Specifically, the module comprises absolute navi-
gational information from a GNSS receiver, relative navi-
gational information from a reduced number of MEMS-
based inertial sensors consisting of two orthogonal
accelerometers and one single-axis gyroscope (aligned with
the vertical axis of the platform, instead of a full IMU with
three accelerometers and three gyroscopes as will be seen in
the next example), speed information from the platform
odometer and a processor programmed to integrate the
information in a loosely-coupled architecture using Mixture
PF having the system and measurement models defined
herein below. Thus, in this embodiment, the present navi-
gation module targets a 3D navigation solution employing
MEMS-based inertial sensors/GPS integration using Mix-
ture PF.

In order to relate this Example 1 to the former Description
in the patent, it is to be noted that the example and models
presented in this embodiment are suitable for the case where
the speed or velocity readings are uninterrupted. Thus they
are used as a control input in the system model. It is to be
noted that the proposed idea of using the speed or velocity
readings to decouple the motion of the platform from the
accelerometer readings to generate better non drifting pitch
and roll estimates is used in the system model.
Background

By way of background, pitch and roll angles of a moving
platform are typically calculated using information from two
of the three gyroscopes used. In contrast, the present mod-
ule, provides the pitch and roll angles of the platform by
utilizing the measurements from two or three accelerom-
eters, thereby eliminating the need for the two additional
gyroscopes. More specifically, the present module operates
to incorporate information from the two or three acceler-
ometers into the system model used by the Mixture PF to
estimate the pitch and roll angles. The benefits of this over
the commonly used full IMU/GNSS integration or the
commonly used 2D dead reckoning/GNSS integration will
be discussed below. In general, the better pitch and roll
estimates lead to estimating a more correct azimuth angle (as
the gyroscope tilt from horizontal is taken into account),
more correct horizontal position and velocity, in addition to
the upward velocity, and the altitude.

First, the advantages of the present embodiment proposed
in this example over the 2D dead reckoning solution with a
single gyroscope and odometer integrated with GNSS will
be discussed. One advantage of the present embodiment
proposed in this example over, the 2D dead reckoning
solution, is the measurements of the two accelerometers
being incorporated in the system model used by the filter to
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estimate the pitch and roll angles. The first benefit of this is
the calculation of a correct azimuth angle, because the
gyroscope (vertically aligned to body frame of the vehicle)
is tilted together with the vehicle when it is not purely
horizontal, and thus it is not measuring the angular rate in the
horizontal East-North plane. Since the azimuth angle is in
the East-North plane, detecting and correcting the gyroscope
tilt provides a more accurate calculation of the azimuth
angle than the 2D dead reckoning, which neglects this effect.

Another advantage of the present embodiment is
increased accuracy due to the following: (i) the incorpora-
tion of pitch angle in calculating the two horizontal veloci-
ties from the odometer-derived speed, thus more accurate
velocity and consequently position estimates, and (ii) the
more accurate azimuth calculation of the first advantage
leads to better estimates of velocities along East and North.

A third advantage is in the capability of calculating pitch
angle, roll angle, upward velocity, and altitude, which have
not typically been calculated in 2D dead reckoning solu-
tions.

The advantages of the present embodiment proposed in
this example over a full IMU/GPS solution are due to two
factors, namely the calculation of pitch and roll from accel-
erometers instead of gyroscopes, and the calculation of
velocity from odometer-derived speed instead of accelerom-
eters. For instance, it is known that, during a GNSS outage
of duration t, a residual uncompensated bias (even after KF
compensation) in one of the two eliminated gyroscopes (the
horizontal ones) will introduce an angle error in pitch or roll
proportional to time because of integration. This small angle
will cause misalignment of the INS. Therefore, when pro-
jecting the acceleration from body frame to local-level frame
(here the East-North-Vertical Up frame), the acceleration
vector will be projected incorrectly. This will introduce an
error in acceleration in one of the horizontal channels in the
local-level frame and consequently this will lead to an error
in velocity proportional to t* and in position proportional to
2. When pitch and roll are calculated from accelerometers,
the very first integration is eliminated and thus the error in
pitch and roll is not proportional to time. Furthermore, the
part of position error due to these angle errors will be
proportional to t* rather than t*.

In addition to the above-mentioned advantage of using
two accelerometers rather than two gyroscopes for calculat-
ing pitch and roll, the second advantage of the present
embodiment proposed in this example is further improve-
ment in velocity calculations. To calculate velocity using the
forward speed derived from the vehicle’s odometer rather
than the accelerometers, relying on the non-holonomic con-
straints on land vehicles, achieves better performance than
calculating it from the accelerometers. This is because, when
calculating velocity from accelerometers, any residual
uncompensated accelerometer bias error (even after KF
compensation) will introduce an error proportional to the
GNSS outage duration t in velocity, and an error propor-
tional to t* in position. The calculation of velocity from the
odometer avoids the first integration, so position calculation
need only to involve one integration. This means that
position can be obtained after one integration when odom-
eter measurements are used while it requires two consecu-
tive integrations to obtain position when accelerometer
measurements are used. In long GNSS outages, the error
when using accelerometers will be proportional to the square
of'the outage duration, which makes this error drastic in long
outages.

In consequence to the above-described two improve-
ments, a further improvement in position calculation fol-
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lows. The errors in pitch and roll calculated from acceler-
ometers (no longer proportional to time) will cause a
misalignment of the inertial system that will influence the
projection of velocity (in the case of the present embodiment
proposed in this example) rather than acceleration (in full-
IMU case), from body frame to local-level frame. This last
fact makes the part of position error due to pitch and roll
errors proportional to t rather than to the t* that was previ-
ously discussed in the first improvement of eliminating the
two gyroscopes. Thus, this current benefit of odometer over
accelerometer is concerning the misalignment problem dis-
cussed earlier, which will be more drastic when using
accelerometers, since acceleration is projected incorrectly in
case of misalignment, while when odometer is used velocity
is projected incorrectly. In general, this causes a difference
of another order of magnitude in time between the odometer
solution and the accelerometer solution.

The only remaining main source of error in the present
embodiment proposed in this example is the azimuth error
due to the vertically aligned gyroscope (this error is also
present in case of a full-IMU, i.e. it is not a drawback in the
present embodiment proposed in this example). Any residual
uncompensated bias in this vertical gyroscope will cause an
error proportional to time in azimuth. The position error
because of this azimuth error will be proportional to vehicle
speed, time, and azimuth error (in turn proportional to time
and uncompensated bias). This only remaining source of
error will be tackled by adequately modeling the stochastic
drift of this gyroscope using advanced modeling techniques,
which leads to a solution with high positioning performance
(see Example 3).

Another advantage of the present embodiment proposed
in this example over a full-IMU is its further lower cost
because of the use of fewer inertial sensors.

Navigation Solution

The state of the moving platform is X,=[(¢ 00V D
r,,A,]%, where ¢, is the latitude of the vehicle, A, is the
longitude, h, is the altitude, v/ is the forward speed, p, is the
pitch angle, r, is the roll angle, and A, is the azimuth angle.

The nonlinear system model (also calledstate transition
model, which is here the motion model) is given by

g1 W)

where u, is the control input which is the reduced inertial
sensors and odometer readings, and w, is the process noise
which is independent of the past and present states and
accounts for the uncertainty in the platform motion and the
control inputs. The state measurement model is

Z=h(%Vi)

Where v, is the measurement noise which is independent of
the past and current states and the process noise and
accounts for uncertainty in GNSS readings.

In order to discuss some advantages of Mixture PF, which
is the filtering technique used in this example, some aspects
of the basic PF called Sampling/Importance Resampling
(SIR) PF are first discussed. In the prediction phase, the SIR
PF samples from the system model, which does not depend
on the last observation. In MEMS-based INS/GNSS inte-
gration, the sampling based on the system model, which
depends on inertial sensor readings as control inputs, makes
the SIR PF suffers from poor performance because with
more drift this sampling operation will not produce enough
samples in regions where the true probability density func-
tion (PDF) of the state is large, especially in the case of
MEMS-based sensors. Because of the limitation of the SIR
PF, it has to use a very large number of samples to assure
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good coverage of the state space, thus making it computa-
tionally expensive. Mixture PF is one of the variants of PF
that aim to overcome this limitation of SIR and to use much
less number of samples while not sacrificing the perfor-
mance. The much lower number of samples makes Mixture
PF applicable in real time as will be discussed later in the
experimental results.

As described above, in the SIR PF the samples are
predicted from the system model, and then the most recent
observation is used to adjust the importance weights of this
prediction. This enhancement adds to the samples predicted
from the system model some samples predicted from the
most recent observation. The importance weights of these
new samples are adjusted according to the probability that
they came from the previous belief of the platform state (i.e.
samples of the last iteration) and the latest platform motion.

For the application at hand, in the sampling phase of the
Mixture PF used in the present embodiment proposed in this
example, some samples predicted according to the most
recent GNSS observation are added to those samples pre-
dicted according to the system model. The most recent
GNSS observation is used to adjust the importance weights
of'the samples predicted according to the system model. The
importance weights of the additional samples predicted
according to the most recent GNSS observation are adjusted
according to the probability that they were generated from
the samples of the last iteration and the system model with
latest control inputs. When GNSS signal is not available,
only samples based on the system model are used, but when
GNSS is available both types of samples are used which
gives better performance and thus leads to a better perfor-
mance during GNSS outages. Also adding the samples from
GNSS observation leads to faster recovery to true position
after GNSS outages.

The System Model

It should be noted that the common reference frames are
used herein. The body frame of the platform has X-axis
along the transversal direction, Y-axis along the forward
longitudinal direction, and Z-axis along the vertical direc-
tion of the platform. The local-level frame is the ENU frame
that has axes along East, North, and vertical (Up) directions.
The rotation matrix that transforms from the platform body
frame to the local-level frame at time k-1 is:

4 —
Rb,k—l =

COSA,_jcosry_| + CcosA,_sinr_ —

SInAg_1COSpy—1

SINAg— SINpg—1 Sinrg—1 SINAg_ SINpg—1COSFE—1

—sinA;_jcosrg_; + —sinAy_ysinrg_; —

CcOsAy_|COSPy_|

COSAy_18Inpy_1 sinry_; COSAy_1SInpy_1 COSF_1

—cospy_sinr_| sinp_y COSPy_1 COSFY_|

To describe the system model utilized in the present
navigation module, which is the motion model for the
navigation states, the control input and the process noise
terms are first introduced. The readings provided by the
odometer, the two accelerometers and the gyroscope com-
prises the control input as u,_,=[v,_,°¢ a,_,°¢ f,_* f,_>
o,_,°]" where v,_,°? is the speed derived from the vehicle
odometer, a,_,° is the acceleration derived from the vehicle
odometer, f,_,* is the transversal accelerometer measure-
ment, f,_” is the forward accelerometer reading, and w,_,*
the angular rate obtained from the vertically aligned gyro-
scope, respectively. The corresponding process noise asso-
ciated with each of the above measurements forms the
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process noise vector; w,_,=[ov,_,°¢ da,_,°¢ &f,_,~ &f,_>
dw,_,?]" where dv,_,°? is the stochastic error in odometer
derived speed, oa,_,°? is the stochastic error in odometer
derived acceleration, 8f,_,™ is the stochastic bias error in
transversal accelerometer, 8f,_,* is the stochastic bias error
in the forward accelerometer, and dw,_,” is the stochastic
bias error in gyroscope reading.

When using three accelerometers the control input is
. =ve Y a, o7 £ 2 7 w,_°]” and the process
noise vector is w,_,=[v,_,°¢ da,_,°? f,_* 8f,_ > &f,_°
dwy,_ %1%, where f,_,° is the vertical accelerometer reading,
and df,_,® is the stochastic bias error in the vertical accel-
erometer.

Position and Velocity Components

Before describing the system equations for position and
velocity, the relation between the vehicle velocity in the
body frame and in the local-level frame is emphasized, it is
given by

E

Vi1 0
N | _opt f

Vil | = Roao1| viey
Up 0

Vi1

where v,_ %, v, Y, and v, %7 are the components of
vehicle velocity along East, North, and vertical Up direc-
tions, and v,_ is the forward longitudinal speed of the
vehicle, while the transversal and vertical components are
zeros. The latitude can then be obtained as:

= + i Ar=
Pre = Pr-1 ar o 20T

v,(f,lcosAk,l cospPi—1

A
Ry +hyy !

N
L Ar= [

e
Pi-1 Rog + Tt

where R, is the Meridian radius of curvature of the Earth’s
reference ellipsoid, and At is the sampling time. Similarly,
the longitude is expressed as:

A = A +d/1 Ar=
AT g e T

E R
Vit Vi-18inA;_ COSP—y

Ag-1 +

=X

—_ Ar _
(Ry + hy—1Jcosgy—; YT Ry + Biopcosg

where R, is the normal radius of curvature of the Earth’s
reference ellipsoid. Finally, the altitude is given by

ek dh
i = k—l+Ek7

Ar=h+ VP AL = Ry + Vi sinpg 1At
The forward speed is given by

VA od od
VIV =V

Azimuth Angle

In a time interval of At between the time epoch k-1 and
k, the counter clockwise angle of rotation around the vertical
axis of the body frame of the vehicle is

Yoot = (0= O0_ )AL

The aim now is to get the corresponding angle when
projected on the East-North plane (i.e. the corresponding
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angle about the vertical “up” direction of the local-level
frame). The unit vector along the forward direction of the
vehicle at time k observed from the body frame at time k is
U,..2=[0 1 0] Tt is necessary to get this unit vector (which
is along the forward direction of the vehicle at time k) seen
from the body frame at time k-1 (i.e. U,,_,”). The rotation
matrix from the body frame at time k-1 to the frame at time
k due to a rotation of v,_,* around the vertical axis of the
vehicle is R (y,_,). The relation between U, ,* and U,,_,”
is given by

U =Rt Wiset”

Thus, since R_(y,_;°) is an orthogonal rotation matrix

cosy;_; -siny;_; 0770 —simy;_;
Ubioy = (ReOZ_DT Uy = | simy cosviy O || 1] = cosyiy
0 0 LjLo 0

The unit vector along the forward direction of the vehicle at
time k seen from the local-level frame at time k-1 can be
obtained as follows

E .
u —SiYj—y
Lo N [_ pt b _ pl z
Vs =| U = Ry 1 U1 = Rpp1| cOSYimy
uvr 0

Thus the new heading from North direction because of the
angle y,_,” is

E
tan’l(U—]
UnNJp

where

UF=sin 4;_; cos py_; oS Y_,"—(COS Ay_; COS Fy_ 1+
sin A;_; sin p,_; sin 7;,_;)sin y,_*

UY=cos A;,_; cos p;_; coS Y;_“—(-sin 4;_; cos r,_+
cos Aj_y sin p;_; sin #,_)sin y,_,°

Note that the azimuth angle defined by

E
tan’l(U—]
UnN

is the angle from the North and its positive values are for
clockwise direction.

In addition to the rotations performed by the vehicle, the
angle vy,_,” has two additional parts. These are due to the
Earth’s rotation and the change of orientation of the local-
level frame. The part due to the Earth’s rotation, around the
vertical Up direction, is equal to (w° sin ¢,_;)At counter
clockwise in the local-level frame (w° is the Earth’s rotation
rate). This Earth rotation component is compensated directly
from the new calculated heading to give the azimuth angle.
It is worth mentioning that this component should be sub-
tracted if the calculation is for the yaw angle (which is
positive along the counter clockwise direction). In this study,
we are obtaining the azimuth angle directly (which is
positive along the clockwise direction), thus this Earth
rotation component is added. The part monitored on vy,_,*
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due to the change of orientation of the local-level frame with
respect to the Earth from time epoch k-1 to k is along the
counter clockwise direction and can be expressed as:

A (singy 1 JAT =

E . o
Vi1 S| Vi1 SinAg_jcosp-rtang

Ar
(Ry + 1)

(Ry + hy—1)cospy—1

This part also has to be added while calculating the azimuth
angle. Finally the model for computing the azimuth angle is:

v]_ysinA,_; cosp_tang;_;
(Ry + 1)

Ar

UE
Ay = tan’l(w] + (0¥ singy_| )AL +

Pitch and Roll Angles

A brief derivation of the pitch and roll equations follows.
When the platform is stationary, the accelerometers measure
components due to gravity because of the pitch and roll
angles (tilt from the horizontal plane). The accelerometers
measurement are given by

. 0 0 —gcospsiny
frl=RrR|0|= (RZ)T 0= gsinp
It g g gcospcosr

where g is the gravity acceleration. If only two accelerom-
eters along the X and Y directions are utilized, the pitch and
the roll angles can be expressed as follows:

If three accelerometers along the X, Y, and Z directions are
utilized, the pitch and the roll angles can be expressed as
follows:

p= tan’l #
N
r=tan’!

G

When the platform is moving, the forward accelerometer
(corrected for the sensor errors) measures the forward plat-
form acceleration as well as the component due to gravity.
In order to calculate the pitch angle, the platform accelera-
tion derived from the odometer measurements is removed
(or decoupled) from the forward accelerometer measure-
ments. Consequently, the pitch angle, when using two accel-
erometers in the sensor assembly, is computed as:
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-3fil) - (aﬁ1 ~ 551%1)

4

P = sin

,1((fky—l

and when using three accelerometers is computed as:

o (fy = 6f ) — (@ —dag?))

(R = Of )+ (084, = 0w )ief, = S} )7 +
(2 =620

Similarly the transversal accelerometer (corrected for the
sensor errors) measures the normal component of the vehicle
acceleration as well as the component due to gravity. Thus,
to calculate the roll angle, the transversal accelerometer
measurement must be compensated for the normal compo-
nent of acceleration. The roll angle, when using two accel-
erometers in the sensor assembly, is then given by:

re = _Sin,l((ka—l = SR+ O - 0w, - 5“’;71)]

geospy

and when using three accelerometers is computed as:

re = _tan,l((ka—l -8l + (Vﬁ1 - 5"%1)(“’/&1 - 5“’;71)]

(fr —0f&n)

Overall State Transition Model

The overall state transition model may be represented as
follows in the case where two accelerometers are used:

Pk
A
Iy
X =| v | = -1, et Who1) =
23
T
Ax

G+ ka,lcosAk,lcospk,l
-t
Ry + hyy

v{,lsinAk,lcospk,l
Mop + 7 ———

(Ry + hy—1)cosgy—1

B + v,(fflsinpk,lAt
vdy - oy

. ,1((fky—1 - 5fky—1) - (aﬁ1 - 551%1)]

sin
g

—sin

geospy

v sind;_; cospy_tang;_q
(Ry + 1)

(U . .
tan” | — [+ w’singy 1 Ar + Ar

((ka—l —SfL)+ (Vﬁ1 ~ 5"%1)(&);71 ~ 5“’;71)]
E
N

U
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When three accelerometers are used the model may be

represented as follows:

Pk
A
Iy
xe=| v | = flucts e wier) =
Pk
3
Ag
v{,lcosAk,lcospk,l A
A
Pi-1 Rog + Tt
v]_ sind;_jcospi_y
Ak—l + =
(Ry + gy Jeosgy
B + v,(f,lsinpk,lAt
od od
Vit — vy
L U =0 fL) = (@ = 8ai?)
tan

[ = 60 + 089, = e @iy =6l ) +
[(fLs —0fL P

tan’l( (FEy = FE0) + 084y =0 (wpy —dwiy)

(fé —d5&)

f .
Vi_1 SInAg_1 cos py_rtangy 1

Ar
(Ry + 1)

arctan(UZ, UN) + w®sing;_  Ar +

The Measurement Model

As previously mentioned, loosely coupled integration for
sensors/odometer and GNSS information is considered in
this Example 1. The present navigation module may be
programmed to utilize the measurement model described
below. Specifically, the GPS position and velocity update is
considered, and thus the GPS observation vector is given as
2,72,* 7, z,” z,%* " ,*]" which includes the GPS read-
ings for the latitude, longitude, altitude, and velocity com-
ponents along East, North, and Up directions respectively.

The measurement model for the present Example 1 can
therefore be given as:

z,f @r + ka

2 A+ VY

P By + VI

w=| o |=hevd=] ,

z° vy sinAgcospy + V,©
3" vl cosAgcospy + V)"
v

%" ka sinpy + V¥

where v,=[v,® v, v, v," v,*" v,*|" is the noise in GPS
readings.
Experimental Results

Performance of the estimated solution is demonstrated by
comparing the solution to the following solutions:

1. SIR PF for 3D “reduced number of inertial sensors with

speed readings”/GPS integration,

2. Mixture PF for 2D dead reckoning/GPS integration,

3. KF for 2D dead reckoning/GPS integration, and

4. KF for 3D full IMU/GPS integration.

The KF for 3D full IMU/GPS integration presented is
with velocity update using the speed logged through the
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OBD II interface during GPS outages. It is to be noted that
the four solutions using either the proposed reduced number
of inertial sensors or the 2D dead reckoning employ speed
read through OBD 1I as a control input for the system model
not as a measurement update, so they do not get any updates
during GPS outages. The errors in all the estimated solutions
are calculated with respect to a high cost, high-end tactical
grade commercially available reference solution made by
NovAtel (described below). It is to be noted that all the
presented PF solutions in the current Example 1 use white
Gaussian noise for the stochastic errors, while the KF
solutions use 1% order Gauss Markov models for the sto-
chastic sensors errors.

The PF presented results are achieved with the number of
samples equal to 100. Using 100 samples with 20 samples
predicted from observation likelihood, one iteration of the
Mixture PF for 3D “reduced number of inertial sensors with
speed readings”/GPS integration takes 0.00398 seconds
(average of all iterations) using MATLAB 2007 on an Intel
Core 2 Duo T7100 1.8 GHz processor with 2 GB RAM. So
the algorithm can work in real-time. One iteration of the KF
for 2D dead reckoning/GPS integration takes 0.000602
seconds (average of all iterations) on the same machine.

The performance of the proposed navigation module
having 3D “reduced number of inertial sensors with speed
readings” and its loosely-coupled integration with GPS
using Mixture PF in environments encompassing several
different conditions was examined using a road test trajec-
tory.

Road Trajectory

The present road test trajectory (FIG. 3) is in Montreal,
Quebec, Canada. This trajectory has urban roadways, some
of' which have relatively larger slope in the Mont-Royal area.
This road test was performed for nearly 85 minutes of
continuous vehicle navigation and a distance of around 100
km, and encountered some locations having GPS outages
(see nine circles overlaid on the map of Montreal in FIG. 3).
Since the present solution is loosely coupled, the nine GPS
outages used have complete blockage: Eight outages were
simulated GPS outages (post-processing) of different dura-
tions, and one was a natural outage in a tunnel under the St.
Lawrence River. Some of the simulated outages were chosen
such that they encompass straight portions, turns, slopes,
different speeds and stops.

The trajectory uses the NovAtel OEM4 GPS receiver and
the inertial sensors from the MEMS-based Crossbow
IMU300CC-100 (see Table 15). As mentioned earlier the
speed readings are collected from the vehicle odometer
through OBD-II. The reference solution used for assessment
of the results is a commercially available solution made by
NovAtel, comprising a SPAN unit integrating the high cost
high end tactical grade Honeywell HG1700 IMU (see Table
17) and the NovAtel OEM4 dual frequency receiver.

Tables 1 and 2 show the root mean square (RMS) error
and the maximum error in the estimated 2D horizontal
position during the nine GPS outages for the compared
solutions. In the present example, the 3D KF with full IMU
uses velocity update from the odometer-derived speed dur-
ing GPS outages, while the other solutions have no update
during outages. Tables 3 and 4 show the RMS and maximum
errors in the estimated altitude during these outages for the
three 3D solutions.

The RMS error in pitch and roll angles in the whole
trajectory for the Mixture PF with 3D “reduced number of
inertial sensors with speed readings”/GPS integration are
0.8432 degrees and 0.4385 degrees, respectively.
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The results for 2D horizontal position errors (Tables 1 and
2) confirm the advantages of the 3D “reduced number of
inertial sensors with speed readings” and the 2D dead
reckoning over the full IMU, namely: the advantage of
eliminating the two gyroscopes, and calculating velocity
from vehicle speed readings collected through OBD Il rather
than from accelerometers. This fact can be seen by compar-
ing the results of KF for 2D dead reckoning and KF with full
IMU, which also has the extra benefit of velocity updates
during GPS outages. This comparison shows that, in general,
reduced system/GPS integration outperforms full IMU/GPS
integration. It is to be noted that the KF for full IMU/GPS
integration for some outages gave better results than KF for
2D dead reckoning/GPS integration because the former has
velocity update from speed read through OBD II during GPS
outages, while the latter does not benefit from any update.
The better performance of reduced system (whether 3D or
2D) over a full IMU will be clearer in the next trajectory
where the KF with full IMU solution does not use any
updates during outages. The cause for the superiority of the
reduced system is that the full IMU has six inertial sensors
whose errors all contribute towards the position error, while
the the reduced system has less inertial sensors and thus less
contribution of inertial sensor errors towards the position
error, especially the two eliminated gyroscopes (as men-
tioned earlier MEMS gyroscopes are the weak part).

The horizontal position error results show, also, that
Mixture PF outperforms KF for 2D dead reckoning/GPS
integration. This may be due to the ability of PF to deal with
nonlinear models. All the PFs presented in this paper use
nonlinear total-state system and measurement models, while
the KF use linearized error-sate models. Furthermore, the
results show that Mixture PF is better when using 3D
“reduced number of inertial sensors with speed readings”
than when using 2D dead reckoning because the former
takes care of the change in road slope and of 3D motion
while 2D dead reckoning assumes that motion is in a
perfectly horizontal plane. The improvement of PF with 3D
“reduced number of inertial sensors with speed readings”
over PF with 2D dead reckoning occurs especially when
there is more slope. So for nearly horizontal portions of the
trajectory the improvement is not so large in 2D horizontal
position, but still 3D “reduced number of inertial sensors
with speed readings” has the advantage of estimating pitch,
roll, velocity component along Up direction, and altitude,
which were not estimated in 2D dead reckoning. The dif-
ference in performance between the 3D and 2D solutions
will be clearer if the trajectory has more inclinations and for
longer distances.

The results in Tables 1 and 2 show that Mixture PF
performs better than the SIR PF because it has better state
estimates before the GPS outage which in turn leads to a
better performance during the outage.

Tables 3 and 4 show that the KF without any updates
during GPS outages has a very bad altitude estimate, mainly
because of uncompensated residuals in the stochastic bias of
the vertical accelerometer. The KF with velocity update
from odometer-derived speed largely enhances the altitude
estimate because it bounds the error growth in the vertical
component of velocity and hence the altitude error. The KF
with velocity update from odometer-derived speed and pitch
and roll update from accelerometers and odometer further
enhances the altitude estimate because it has a better pitch
estimate from accelerometer which leads to a better trans-
formation of velocity from body frame to local-level frame
and thus to better upward velocity update and a better
altitude. Mixture PF with velocity update from odometer-
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derived speed and pitch and roll update from accelerometers
and odometer has a better altitude estimate than the KF with
exactly the same updates because of the use of nonlinear
models in PF in contrast with the linearized models used by
KF. Furthermore this Mixture PF solution outperforms all
the other compared solutions.

All these horizontal position and altitude results demon-
strate that the proposed Mixture PF solution achieves good
results for a MEMS-based INS/GPS navigation solution.

Tables 3 and 4 show that both PFs with 3D “reduced
number of inertial sensors with speed readings™ outperform
the KF with full IMU in the altitude errors during GPS
outages. Furthermore the Mixture PF performs better than
the SIR PF. All the previous results demonstrate that the
proposed solution (i.e. Mixture PF for 3D “reduced number
of inertial sensors with speed readings”/GPS integration)
performs better than all the other compared solutions, and
achieves good results for a MEMS-based INS/GPS naviga-
tion solution.

To show the details of the performance during some of
these GPS outages, outages numbers 3, 4, and 9 of FIG. 3
will be presented in more detail. FIGS. 4, 5, and 6 show the
sections of the trajectory during the GPS outage numbers 3,
4, and 9, respectively. To illustrate the vehicle dynamics
during these three outages respectively, FIGS. 7, 8 and 9
show the forward speed of the vehicle, its azimuth angle, its
altitude, and its pitch angle, all from both the NovAtel
reference solution and the Mixture PF with 3D “reduced
number of inertial sensors with speed readings”.

To examine the performance during turns and slopes, the
3" and 4™ GPS outages are examined. The 3’ outage (FIG.
4), whose duration is 80 seconds, involves a couple of turns.
The first turn is a 70° turn where the speed of the vehicle
goes down from 50 km/h to 10 knmv/h during the turn and
back to 60 km/h, and the second turn is an elongated one at
about 60 km/h. This outage starts at a slope of 5°, then a
horizontal portion followed by a slope of 3°. The maximum
horizontal position error for Mixture PF with 3D “reduced
number of inertial sensors with speed readings” is 20.81
meters, while for SIR PF with 3D “reduced number of
inertial sensors with speed readings” is 22.2 meters, for
Mixture PF with 2D dead reckoning is 22.36 meters, for KF
with 2D dead reckoning is 49.48 meters, and for KF with full
IMU and OBD II velocity update is 82.88 meters.

The 4” outage (FIG. 5), whose duration is 80 seconds, is
during a near 180° elongated turn where the vehicle is
between a speed of 35 and 55 km/h (see FIG. 8). Note that
the discontinuity in the azimuth in FIG. 8, near the 40”
second, is a plotting discontinuity because the azimuth angle
there goes above 360°, where it cycles back to 0°. During
this outage, the slope is at —=5° and towards the end goes to
-2°. The maximum horizontal position error for Mixture PF
with 3D “reduced number of inertial sensors with speed
readings” is 17.8 meters, while for SIR PF with 3D “reduced
number of inertial sensors with speed readings” is 24.54
meters, for Mixture PF with 2D dead reckoning is 21.76
meters, for KF with 2D dead reckoning is 69.27 meters, and
for KF with full IMU and OBD II velocity update is 36.12
meters. In this outage, the maximum error for KF with full
IMU is better than KF with 2D dead reckoning because the
former has velocity updates during outages, which bounds
the position error growth; this fact will be clear when
examining the RMS errors. The RMS position error for
Mixture PF with 3D “reduced number of inertial sensors
with speed readings” is 10.75 meters, while for SIR PF with
3D “reduced number of inertial sensors with speed readings”
is 17. 67 meters, for Mixture PF with 2D dead reckoning is
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12.93 meters, for KF with 2D dead reckoning is 25.16
meters, and for KF with full IMU and odometer update is
28.59 meters. The KF with 2D dead reckoning has better
RMS error than the KF with full IMU and odometer update,
but worse maximum error because it drifts a lot towards the
end of the outage. What makes the KF with full IMU have
comparable result is the velocity update using the speed
readings from OBD II. From these errors it may be observed
that the Mixture PF with 3D “reduced number of inertial
sensors with speed readings” improves the estimated navi-
gation solution of a moving platform compared to other
solutions. Also, it can be seen that Mixture PF with 3D
“reduced number of inertial sensors with speed readings” is
the best during all the portions of the turn but it has a slight
drift at the end, thereby still having improved RMS and
maximum position errors.

To show the performance during straight portions of the
trajectory and also including stops, the 9 GPS outage is
presented. This outage is a natural outage in a tunnel for 220
seconds where the speed changes as in FIG. 9. The slope is
at -2° in the beginning, followed by a horizontal portion,
and towards the end of the outage goes to 3°. The travelled
distance during this outage is nearly 1.75 km. The maximum
horizontal position error for Mixture PF with 3D “reduced
number of inertial sensors with speed readings™ is 33.41
meters, while for SIR PF with 3D “reduced number of
inertial sensors with speed readings” is 40.33 meters, for
Mixture PF with 2D dead reckoning is 34.23 meters, for KF
with 2D dead reckoning is 50.8 meters, and for KF with full
IMU and odometer update is 201.64 meters. The advantage
of reduced systems (3D and 2D) over full IMU is again
apparent from these results, as well as an advantage of
Mixture PF over SIR PF and KF.

For MEMS-based inertial sensors, these results show that
the proposed solution (Mixture PF with 3D “reduced num-
ber of inertial sensors with speed readings”) has improved
performance even during GPS outages encompassing dif-
ferent conditions such as straight portions, turns, and stops.

The results demonstrated that the present reduced inertial
sensor system/GPS integration improve upon commonly
available solutions for full IMU/GPS integration. Specifi-
cally, the improvement in the positioning performance can
be summarized by the fact that the reduced system has fewer
inertial sensor errors contributing to the position error than
a full IMU. A primary reason for the improvement is due to
the elimination of the two gyroscopes that were used to
calculate pitch and roll angles, and the use of accelerometer
data instead. Another reason is the calculation of velocity
from the platform’s speed readings collected through OBD
11, instead of calculating velocity from accelerometer read-
ings.

The advantages of the reduced system over a full IMU
were shown by comparing the KF with 2D dead reckoning
to KF with full IMU, whereby the former showed better
horizontal positioning performance in all the presented
trajectories despite the fact that the latter had an additional
source of update during GPS outages. The results also
demonstrate that the Mixture PF for 2D dead reckoning
improves upon KF for 2D dead reckoning, which is primar-
ily due to the ability of the former to deal with nonlinear
system and measurement models while the latter uses lin-
earized error models.

Furthermore the results demonstrate that the Mixture PF
with 3D “reduced number of inertial sensors with speed
readings” has an improved performance than Mixture PF
with 2D dead reckoning, which is primarily due to the latter
assuming motion in the 2D horizontal plane thereby neglect-
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ing any 3D movements. The difference in performance
between 3D and 2D reduced systems may be clearer if the
trajectory has more inclinations and for a longer distance.
Also, 3D “reduced number of inertial sensors with speed
readings” has the advantage of estimating pitch, roll, veloc-
ity component along Up, and altitude, which were not
estimated in 2D dead reckoning.

Mixture PF with 3D “reduced number of inertial sensors
with speed readings” was compared to SIR PF with 3D
“reduced number of inertial sensors with speed readings”,
and demonstrated improved performance. This better per-
formance of Mixture PF during GPS outages is primarily
due to the improved performance during GPS availability
before the outage.

Having run the compared solutions on several trajectories
and considering the maximum error in horizontal position-
ing, the KF with 2D dead reckoning achieved an average
improvement of approximately 76% over KF with full IMU
without any updates during GPS outages and of approxi-
mately 58% over KF with full IMU with velocity updates
during outages. Mixture PF with 2D dead reckoning
achieved an average improvement of approximately 55%
over KF with 2D dead reckoning. Mixture PF with 3D
“reduced number of inertial sensors with speed readings”
achieved an average improvement of approximately 9%
over Mixture PF with 2D dead reckoning. This last percent-
age is of course trajectory dependent because it depends on
the characteristics of the terrain traversed. Furthermore,
Mixture PF with 3D “reduced number of inertial sensors
with speed readings” achieved an average improvement of
approximately 30% over SIR PF with 3D “reduced number
of inertial sensors with speed readings”.

The results showed that the proposed 3D navigation
solution using Mixture particle filter for “reduced number of
inertial sensors with speed readings”/GPS integration out-
performs all the other navigation solutions in the compari-
son, and demonstrates good performance for MEMS-based
sensors during GPS outages even for prolonged durations.
Furthermore, with the low number of samples used the
algorithm can work in real-time.

Example 2

Mixture Particle Filter for Enhanced 3D
Full-IMU/Odometer/GPS Integration

The present example demonstrates the use of the present
navigation module to determine a 3D navigation solution
using a Mixture PF as a nonlinear filtering technique for
integrating a full (rather than reduced) low-cost MEMS-
based IMU integrated with GPS and the odometer readings
from the platform. A loosely coupled integration approach
was used in this Example.

It should be noted that the example and models presented
in this embodiment are suitable for the case where the speed
or velocity readings is interrupted. Thus, they are used for
measurement update to the filter, rather than as a control
input. For clarity, the use of the speed or velocity readings
to decouple the motion of the platform from the accelerom-
eter readings to generate better non-drifting pitch and roll
estimates is used, but it is used as measurement updates
rather than a control input because the source of speed or
velocity readings might be interrupted. The foregoing pro-
vides an advantage over the commonly used odometer
updates for velocity only.
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Background

This example attempts to demonstrate the incorporation
of two methods for improving the performance of MEMS-
based INS/GNSS integration during GNSS outages. The
first method is to utilize the speed derived from the vehicle
odometer to get measurement update for velocities (exploit-
ing the non-holonomic constraints on land vehicles). The
second method is to calculate the pitch and roll angles of the
platform from the readings of two accelerometers (the
longitudinal and transversal accelerometers) readings or
three accelerometers, together with the odometer readings,
and use them as a measurement update in the filter for pitch
and roll calculated from the gyroscopes. Thus the pitch and
roll from accelerometers are used in the measurement
model, while those from the gyroscopes are used in the
system model.
Navigation Solution

In the current example, which uses Mixture PF for INS/
Odometer/GNSS integration if GNSS is available, some
samples predicted according to the most recent GNSS
observation are added to those samples predicted according
to the system model (here the INS motion model). The
importance or weight of the samples predicted from the
system model are adjusted using GNSS readings, while the
weight of the samples predicted from GNSS observation are
adjusted according to the samples of the last iteration and the
system model with IMU readings. Alternatively, when
GNSS signal is not available, some samples predicted using
the odometer are added to those predicted based on INS
motion model. The importance or weight of the samples
predicted from the motion model are adjusted using odom-
eter readings, while the weights of the samples predicted
using the odometer are adjusted according to the samples of
the last iteration and the motion model with IMU readings.

Thus, this Example demonstrates that during GNSS avail-
ability, sampling from both INS motion model and GNSS
observation can provide improved performance, leading to
improved performance of the present module during GNSS
data outages. Adding samples according to the odometer
(updated by the motion model) to those sampled according
to the motion model (updated by the odometer) can also
enhance the performance during GNSS outages.
The System Model

The common reference frames are used in this research.
The body frame of the vehicle has the X-axis along the
transversal direction, Y-axis along the forward longitudinal
direction, and Z-axis along the vertical direction of the
vehicle completing a right-handed system. The local-level
frame is the ENU frame that has axes along Fast, North, and
vertical (Up) directions. The rotation matrix that transforms
from the vehicle body frame to the local-level frame at time
k-11is

4 —
Rb,k—l =

COSA,_|cosry_) + . CcosA,_sinr_ —
. . . sinAg_jcospyy . .
sinAy_; sinpy_ysinry_; sinA,_jsinp,_jcosry_;
—sinAk,lcosrk,l + —sinAk,lsinrk,l -
. . COSA_1COSPy_1 .
CcosAy_y sinpy_y sinrg_; CcosA,_1sinpy_1cosri_|

—COSpy_1SinFy_| sinpy_y COSPy_1COSFY_|

To describe the nonlinear system model, which is here the
motion model for the navigation states, the control input and
the process noise terms are first introduced. The measure-
ment provided by the IMU is the control input; u,_,=[f,_,*
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£ B @y 0¥ @y 7} where £, % 7, and £, 7 are
the readings of the accelerometer triad, and w,_,”*, w,_,”, and
w,_,~ are the readings of the gyroscope triad. The corre-
sponding process noise associated with each of the above
measurements forms the process noise vector; w,_,=[0f,_,*
of,_ . 8f,_ 7 dw,_ " dw,_,” dw,_,*]" where df,_,~, 8f,_,*, and
8f,_,” are the stochastic errors in accelerometers readings,
and dw,_,", dw,_,”, and dw,_,” are the stochastic errors in
gyroscopes readings.

The Position and Velocity Equations
The latitude can then be obtained as:

N
V-1

= + d¢ Ar= +
Pk = Pr-1 ar . = Q-1 m

where R, is the Meridian radius of curvature of the Earth’s
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reference ellipsoid and At is the sampling time. Similarly, the 5

longitude is expressed as:

E
Vi-1

A = A +d/1 Ar=2X +
= Ao+ o = Ayt

— At
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where R, is the normal radius of curvature of the Earth’s
reference ellipsoid. The altitude is given by
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The velocity is given by
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where ¢ is the Earth rotation rate and g is the acceleration
of the gravity.

The Attitude Equations

The attitude angles are calculated using quaternions
through the following equations. The relation between the
vector of quaternion parameters and the rotation matrix from
body frame to local-level frame is as follows
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at, 0.25{Rb,1(3,2) = Rb (2, 3Wg;
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The three gyroscopes readings should be compensated for
the stochastic errors as well as the Earth rotation rate and the
change in orientation of the local-level frame. The latter two
are monitored by the gyroscope and form a part of the
readings, so they have to be removed in order to get the
actual turn. These angular rates are assumed to be constant
in the interval between time steps k-1 and k and they are
integrated over time to give
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The quaternion parameters are propagated with time as
follows
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The definition of the quaternion parameters implies that

(@@ +Ha) g =1

Due to computational errors, the above equality may be
violated. To compensate for this, the following special
normalization procedure is performed. If the following error
exists after the computation of the quaternion parameters

A=T-((g P+ +Ha P HaY)

then the vector of quaternion parameters should be updated
as follows

Gk

The new rotation matrix from body frame to local-level
frame is computed as follows

R (1, 1) RL.(1,2) RL,(1,3)
R, =| R, 1) R,(2.2) R,(2.3)|=
R,GB.1D RL,(3,2) R,(3,3)
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-continued
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The attitude angles are obtained from this rotation matrix
as follows

P = tanl[ RhiG.2 ]
-
VR (1,27 + (B2, 27

LR BD

Frp =tan A AT
R, (3,3)

R (1,2

Ay = tan! lb,k( )
R, (2,2)

The Measurement Model

As mentioned earlier, two measurement models are used,
one when GNSS is available and the other during GNSS
outages. It is to be noted that in both models, pitch and roll
angles, which are predicted from the gyroscope readings in
the system model as described in the previous section, are
updated from the values calculated from the two (transversal
and longitudinal) or three accelerometers and odometer
readings.

The importance of the velocity update from odometer-
derived speed during GNSS outages results because any
uncompensated accelerometer bias error will introduce an
error proportional to t in velocity, and an error proportional
to t* in position, as discussed earlier in Example 1. The
calculation of velocity from the odometer avoids the first
integration operation, so it is beneficial for the integration
filter to use it for updating the velocities calculated from the
accelerometers.

The importance of pitch and roll update derived from
accelerometers is due to several reasons mentioned earlier in
Example 1, the most important of them is that the calculation
of pitch and roll from the gyroscopes involves integration,
while their calculation from the accelerometers does not.
The drawback of the integration is that it accumulates errors
due to any residual uncompensated sensor bias errors, this
error will be proportional to time. As discussed earlier, this
error consequently will lead to an error in velocity propor-
tional to t* and in position proportional to t°. The pitch and
roll calculated from accelerometers will not have the first
integration and thus position error due to them will be
proportional to t>. Therefore, pitch and roll update is an
important factor in enhancing the performance of the navi-
gation solution during GNSS outages.

Furthermore, velocity updates from odometer-derived
speed use the transformation from body frame velocities to
local-level frame, which involves the pitch and azimuth
angles. Thus, better pitch estimates lead to better transfor-
mation and therefore better velocity updates. All of this
results in an enhanced position estimate.

During GNSS Availability

In this Example 2, loosely-coupled integration is used and

position and velocity updates are obtained from the GNSS
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receiver, whereas pitch and roll updates are obtained from
the two (transversal and longitudinal) or three accelerom-
eters and odometer readings. Thus the observation vector is
given as z,=[z,* 7, z," z,> z,"" z,** z,* z,"]” which consists
of the GNSS readings for the latitude, longitude, altitude,
and velocity components along East, North, and Up direc-
tions respectively; as well as the pitch and roll update values.
The measurement model can therefore be given as:

©
7 o+ Vy
oY
z A+ VY
P R+ VP
e vE £ Ve
w=| | =hevad = n
7" v, +V,
v
" AL
P
% e+ V]
% e+ V{

where v, =[v,*v, > v/ v, Yev v ev P v T
observations used for update.
During GNSS Outages

When there is a GNSS outage, the speed derived from
odometer is used to update velocity, as well as for the pitch
and roll updates described earlier. Thus the observation
vector is given as z,~[z,” zZ z,”]” which consists of the
odometer-derived forward speed, pitch, and roll update
values. The measurement model can therefore be given as:

is the noise in the

v
z! O+ o))+ (V/fjp)z +v
=] g | =k, Vi) =
,; pe+Vf
Z
* re+ V)

where v,=[v,v,£ v,"]" is the noise in the observations used
for update.

It is to be noted that the sampling from the observation
likelihood, in the case of the speed derived from odometer
exploits the relation between the vehicle velocity in the body
frame and in the local-level frame together with the non-
holonomic constraints on land vehicles which arise from the
fact that the vehicle cannot move in the transversal or the
vertical directions in the body frame (thus the transversal
and upward components of velocity in the body frame are
zeros). So, the sampling from observation likelihood uses
the following

v
f .
% 0 Ve 7 sinAgcospy Ve
v v
@ | =Rl 20 [+| V" | =] 2 cosAccospy |+ | Vi
o 0 e v vy

2 sinpy

It should be noted also that the vehicle built-in odometer
detects stopping very well, so velocity updates from odom-
eter act as a zero velocity updates (ZUPT) when the vehicle
stops.

Experimental Results

A road test trajectory is presented in this Example 2 to
assess the present navigation module, and demonstrates
performance in environments having several different con-
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ditions. The aim is to examine the performance of the
navigation module using Mixture PF for MEMS-IMU/
Odometer/GPS integration, and to compare the results with
three other solutions, namely:

(1) KF solution for MEMS-IMU/Odometer/GPS with
exactly the same updates as Mixture PF (i.e. velocity
update from odometer-derived speed, together with
pitch and roll updates from accelerometers);

(2) KF solution for MEMS-IMU/Odometer/GPS with
only velocity update from odometer-derived speed dur-
ing GPS outages;

(3) KF solution for MEMS-IMU/GPS without any update
during GPS outages.

The errors in all the estimated solutions are calculated

with respect to the NovAtel reference solution.

The presented results for Mixture PF are achieved with
the number of samples equal to 100. Using 100 samples, one
iteration of the algorithm takes 0.0042 seconds (with update
phase and 20 samples predicted from observation likeli-
hood) or 0.00099 seconds (if prediction phase only) using
MATLAB 2007 on an Intel Core 2 Duo T7100 1.8 GHz
processor with 2 GB RAM. So the algorithm can work in
real-time. The performance with larger numbers of particles
was examined and minor enhancement in performance was
observed, which was not necessary given the added com-
putational complexity.

Road Trajectory

The road test trajectory (FIG. 10) presented here is around
the Kingston area in Ontario, Canada. This trajectory has
some urban roadways and some long highway sections
between Kingston and Napanee. In addition, the terrain
varies with many hills and winding turns. This road test was
performed for nearly 100 minutes of continuous vehicle
navigation and a distance of around 96 Km. The ultimate
check for the proposed system’s accuracy is during GPS
signal blockage, which can be intentionally introduced in
post processing. Since the presented solution is loosely-
coupled, the outages used have complete blockage. Ten
simulated GPS outages of 120 seconds duration each (shown
as circles overlaid on the map in FIG. 10) were introduced
such that they encompass all conditions of a typical trip
including straight portions, turns, slopes, high speed, slow
speeds and stops.

The trajectory uses the NovAtel OEM4 GPS receiver and
the inertial sensors from the MEMS-based Crossbow
IMU300CC-100 (see Table 15). As mentioned earlier the
speed readings are collected from the vehicle odometer
through OBD-II. The reference solution used for assessment
of the results is a commercially available solution made by
NovAtel, it is a SPAN unit integrating the high cost high end
tactical grade Honeywell HG1700 IMU (see Table 17) and
the NovAtel OEM4 dual frequency receiver.

Tables 5 and 6 show the root mean square (RMS) error
and the maximum error in the estimated 2D horizontal
position during the ten GPS outages for the four compared
solutions. Tables 7 and 8 show the RMS and maximum
errors in the estimated altitude during these outages for the
four solutions.

The results for horizontal position errors (Tables 5 and 6)
show that the KF without any updates during GPS outages
has very poor performance because the compensation of the
stochastic biases of the accelerometers and gyroscopes are
not perfect. As discussed earlier any uncompensated bias in
one of the accelerometers will lead to position error propor-
tional to the square of the outage duration. Moreover, any
uncompensated bias in one of the two horizontal gyroscopes
will lead to a positional error proportional to the cube of the
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outage duration. Despite the fact that KF tries to compensate
for these biases, the residuals of this compensation still have
a big influence, especially since the outage duration used in
this trajectory is 120 seconds. The KF with velocity update
from odometer-derived speed performs much better than the
KF without any updates during GPS outages. This is because
of the velocity update that bounds the growth of velocity
errors in the KF and hence position errors due to velocity.
Furthermore, this velocity update which includes the non-
holonomic constraints on land vehicles, benefits to a certain
extent the pitch and roll errors, and hence enhances some-
what the position error due to these attitude errors.

These results also show that the KF with velocity update
from odometer-derived speed, and pitch and roll update
from accelerometers and odometer outperforms the KF with
only velocity update from odometer-derived speed during
GPS outages. This is because the accelerometer-derived
pitch and roll involve no integration operations and thus
their errors do not grow with time, so the position error
depending on these attitude errors is enhanced. Furthermore,
velocity updates from odometer-derived speed used the
transformation from body frame velocities to local-level
frame, which involves the pitch and azimuth angels. So
better pitch estimates lead to better transformation and
therefore better velocity updates. All of this leads to an
enhanced position estimate.

The results demonstrate that the Mixture PF with velocity
update from odometer-derived speed, and pitch and roll
update from the accelerometers and odometer performs
better than the KF with exactly the same updates and
consequently outperforms all the other compared solutions.
This may be because of the ability of Mixture PF to use
nonlinear system and measurement models without any
approximation compared to the linearized models used by
KF.

Tables 7 and 8 show that the KF without any updates
during GPS outages has a very bad altitude estimate, mainly
because of uncompensated residuals in the stochastic bias of
the vertical accelerometer. The KF with velocity update
from odometer-derived speed largely enhances the altitude
estimate because it bounds the error growth in the vertical
component of velocity and hence the altitude error. The KF
with velocity update from odometer-derived speed, and
pitch and roll update from the accelerometers and odometer
further enhances the altitude estimate because it has a better
pitch estimate from accelerometer which leads to a better
transformation of velocity from body frame to local-level
frame and thus to better upward velocity update and a better
altitude. Mixture PF with velocity update from odometer-
derived speed, and pitch and roll update from the acceler-
ometers and odometer has a better altitude estimate than the
KF with exactly the same updates, which may be due, at
least in part to the use of nonlinear models in PF in contrast
with the linearized models used by KF. Furthermore this
Mixture PF solution outperforms all the other compared
solutions.

All these horizontal position and altitude results demon-
strate that the present navigation module is capable of
utilizing a Mixture PF solution to achieve good results for a
MEMS-based INS/GPS navigation solution.

FIGS. 11, 12 and 13 show the sections of the trajectory
during the GPS outages number 3, 5, and 8, respectively. To
give an idea about the vehicle dynamics during these three
outages respectively, FIGS. 14, 15 and 16 show the forward
speed of the vehicle and its azimuth angle, both from the
NovAtel reference solution.
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To examine the performance during slight turns, the 3¢
outage (FIG. 11) is examined. It consists of two slight turns
the first is approximately 20° with a speed of about 60 km/hr
and the second is approximately 55° with a speed deceler-
ating from about 60 km/hr to 40 km/hr (see FIG. 14). The
maximum horizontal position error for Mixture PF with
velocity, pitch and roll updates during GPS outages is 11.95
meters, while for KF velocity, pitch and roll updates is 26.86
meters, for KF with velocity updates is 272.96 meters, and
for KF without any updates during GPS outages is 444.7
meters.

To examine the performance during turns, the 5%, and 8%
GPS outages are examined. The 5% outage (FIG. 12) is
during a sharp 90° turn and the speed of the vehicle is about
80 km/h before the turn, about 30 knv/hr during the turn, and
then back again to about 80 km/hr after the turn (see FIG.
15). The maximum horizontal position error for Mixture PF
with velocity, pitch and roll updates during GPS outages is
30.19 meters, while for KF velocity, pitch and roll updates
is 47.57 meters, for KF with velocity updates is 52.69
meters, and for KF without any updates during GPS outages
is 745.7 meters. The 87 outage (FIG. 13) is during a double
turn and it involves a stop. The first turn is about 50°, the
second is about 80°. The speed changes as seen in FIG. 16.
It should be noted that the discontinuity in the azimuth in
FIG. 16, near the 50th second, is only a plotting disconti-
nuity because the azimuth angle there exceeds 360°, so it
cycles back to 0°. The maximum horizontal position error
for Mixture PF with velocity, pitch and roll updates during
GPS outages is 13.07 meters, while for KF with velocity,
pitch and roll updates is 28.16 meters, for KF with velocity
updates is 69.6 meters, and for KF without any updates
during GPS outages is 599.2 meters.

The 9” GPS outage shows the performance during a
straight portion of the trajectory where the vehicle’s speed is
about 83 km/h, and the travelled distance is nearly 2.78 km.
The maximum horizontal position error for Mixture PF with
velocity, pitch and roll updates during GPS outages is 9.68
meters, while for KF velocity, pitch and roll updates is 11.77
meters, for KF with velocity updates is 321.87 meters, and
for KF without any updates during GPS outages is 487.1
meters.

For MEMS-based inertial sensors, these results show that
the proposed Mixture PF solution has a good performance
during long GPS outages encompassing either straight por-
tions or turns, at different speeds including stops.
Summary of the Results

The results show that the KF without any updates during
GPS outages has very poor performance. The KF with
velocity update from odometer-derived speed outperforms
the KF without any updates during GPS outages. These
results also demonstrate that the KF with velocity update
from odometer-derived speed and pitch and roll updates
from both accelerometers and odometer performs better than
the KF with only velocity updates during GPS outages. This
elucidates the benefit of the accelerometer-derived pitch and
roll updates to enhance these angle estimates and thus the
velocity projection which leads to a better position estimate.
The results also demonstrate that the Mixture PF with
velocity update from odometer-derived speed and pitch and
roll update from accelerometers and odometer performs
better than the KF with exactly the same updates and
consequently improves upon all the other compared solu-
tions. This is primarily because of the approximation during
linearization of the models used by the KF.

Having run the compared solutions on several trajectories
and considering the maximum error in horizontal position-
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ing, the KF with velocity updates during GPS outages
achieved an average improvement of approximately 73%
over KF without any update during GPS outages. The KF
with velocity, pitch and roll updates during GPS outages
achieved an average improvement of approximately 58%
over KF with velocity update only during GPS outages. The
Mixture PF with velocity, pitch and roll updates during GPS
outages achieved an average improvement of approximately
64% over KF with the same updates, of approximately 85%
over KF with velocity updates only, and of approximately
95% over KF without any updates during GPS outages.
The proposed Mixture PF solution improved upon all the
other solutions in the comparison, and showed stable and
good performance (compared to general MEMS-based iner-
tial sensors/GPS integration performance during GPS out-
ages), even for long GPS outage durations. Moreover, with
the low number of samples used and the presented running
times, the Mixture PF algorithm can work in real-time.

Example 3
Optional Enhancements for Inertial Sensors/GPS
Integration
Background

One remaining main source of error in the “reduced
number of inertial sensors with speed readings” is the
azimuth error, which is mainly due to the vertically aligned
gyroscope (this error is also present in the case of a full-IMU
or 2D dead reckoning solutions). Any residual uncompen-
sated bias in the vertical gyroscope will cause an error in the
azimuth proportional to the duration of the GNSS outage.
The position error because of this azimuth error will be
proportional to vehicle speed, the duration of the GNSS
outage, and azimuth error (in turn proportional to the dura-
tion of the GNSS outage and the uncompensated bias). Thus,
the position error because of the residual uncompensated
bias in the vertical gyroscope will be proportional to the
square of the duration of the GNSS outage.

Accordingly, the present Example targets improved mod-
eling of the stochastic drift of the MEMS-based gyroscope
(used in the proposed reduced systems™) to enhance the
positioning accuracy of Mixture PF for 2D dead reckoning/
GPS and 3D “reduced number of inertial sensors with speed
readings”/GPS integration. In this Example, the known
Parallel Cascade Identification (PCI) was used as a nonlinear
system identification technique for modeling the stochastic
gyroscope drift. The use of this technique exploits the fact
that PF is a nonlinear filtering technique that can accom-
modate nonlinear models. By examining the characteristics
of the generated model for the gyroscope drift using PCI, it
was found that the identified model was near linear, but of
high order (i.e. long memory length). These observations led
to the further testing of higher order Auto-Regressive (AR)
models for modeling the gyroscope drift. Such higher order
models are difficult to use with KF since the size of the state
vector and consequently the size of the dynamic matrix and
error covariance matrix become very large and complicates
the KF operation.

Modeling the Stochastic Gyroscope Drift Using Parallel
Cascade Identification

Two different datasets were recorded from the vertical
gyroscope of the Crossbow IMU300CC-100 where the IMU
is stationary. Each dataset was obtained over more than 4
hours. First, the bias offset of the gyroscope reading is
removed for each dataset (the offset is obtained as the mean
of the gyro reading during the first 100 seconds of the
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dataset). The first dataset is used to build the model of the
gyroscope drift, the second dataset is used for testing the
obtained model to examine its suitability and ability to
generalize for a different dataset. In the present Example, the
gyroscope data is down-sampled to 1 Hz and its units are
radians/second. The length of the data used is 16001 seconds
(i.e. 16001 records).

The gyroscope readings of the first dataset (after remov-
ing the initial offset) from record 1 to 16000 are used as the
input used to build the PCI model, the readings from record
2 to 16001 are used as the output. Since PCI builds the
parallel cascade based on input/output data, several PCI
models are built as a one-ahead predictor using this input/
output data, covering a wide range of values for the maxi-
mum lag R and the degree of polynomial D. These different
PCI models were tested on the second dataset (not used for
building the models) to choose the model with the best
values of R and D, so that it can generalize on the other
dataset and not just fit the training data. The best PCI model
found has maximum lag R=120 and the degree of polyno-
mial D=1. It consists of 5 parallel branches. The number of
parameters in the model might be thought to be 5x
(120+2)=610, but actually the number of parameter is 122.
This is because the order of the polynomial terms D=1 and
all the cascades outputs are summed to provide the output,
so mathematical manipulation shows that the actual number
of parameters is 122. On the other hand, the two datasets
used for training and testing have 16001 records each.
Moreover, the road-test results presented later for different
MEMS-based inertial sensors show the ability of the
obtained model to generalize and determine the stochastic
drift of the two different gyroscopes used in different tra-
jectories.

FIGS. 17, 18, 19 and 20 are for the second stationary
dataset, which was not used for building the PCI model.
FIG. 17 shows the autocorrelation of the stationary o,
gyroscope reading. FIG. 18 gives the autocorrelation of the
stationary o, gyroscope reading after removing the initial
bias offset. According to this autocorrelation, it can be seen
that the traditional Gauss-Markov (GM) model is not the
most suitable model for this MEMS-based gyroscope drift.
FIG. 19 presents the stationary w, gyroscope reading (after
removing the initial bias offset) from 2 to 16001 together
with the estimated drift by the PCI model that has as input
the readings from 1 to 16000. This figure shows how well
the PCI model can predict the stochastic drift in gyroscope
reading. FIG. 20 shows the autocorrelation of the stationary
, gyroscope reading after removing the initial bias offset
and the drift estimated by the PCI model. This autocorrela-
tion function shows that after removing the estimated drift,
the remaining signal is mainly white noise. The use of the
PCI model in the integration filter during a trajectory and
how it is updated so that it can get the actual drift is
presented.

Modeling the Stochastic Gyroscope Drift Using Higher
Order AR

The best PCI model used to model the gyroscope drift
under consideration had maximum lag R=120 and the
degree of polynomial D=1. Since the order of the polyno-
mial terms D=1 and all the cascades outputs are summed to
provide the overall system output, the mathematical manipu-
lation can show that all the parallel cascades can collapse to
one cascade consisting of a dynamic linear element with
maximum lag of 120 followed by a first order polynomial
(linear term and a constant term). Consequently, this system
is like an AR system with a sole difference that the poly-
nomial has a constant term as well. However, by examining
its value, it was very small compared to the linear term.
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Thus, it was interesting to see how well a higher order AR
model would do in modeling this gyroscope drift. The
equation of the AR model of order p is in the form

»
Yk = —Z @ Yg-n + Powy

n=1

where w,, is white noise which is the input to the AR model,
v, is the output of the AR model, the o’s and § are the
parameters of the model.

The first dataset was used to obtain the AR parameters
using the Yule-Walker method. For the stationary readings
down-sampled at 1 Hz, an AR model whose order is 120 was
obtained to model the drift. The model was tested using the
second dataset to validate its capability to generalize and not
just fit the training data. Also, theoretically, it is expected
that there is no over-fitting because the number of param-
eters of the model is 121 while the two datasets used for
training and testing have 16001 records each. Furthermore,
the road-test results presented later for different inertial
sensors show the capability of the obtained models to
generalize and get the stochastic drift of the different gyro-
scopes used.

In the following presented discussion, the AR model is
used without the white noise input to show the ability of the
model to get the drift of the readings. The white noise input
will be added later on when the model is used in the
integration filter.

FIGS. 21 and 22 are for the second stationary dataset,
which was not used for building the AR model. FIG. 21
presents the stationary w, gyroscope reading (after removing
the initial bias offset) from record 2 to 16001 together with
the one-ahead predicted drift by the AR model (without the
white noise input) that uses the values of the respective
previous gyroscope readings, from record 1 to 16000,
assuming the initial conditions before reading record 1 are
zeros. FIG. 22 shows the autocorrelation of the stationary m,
gyroscope reading after removing the initial bias offset and
the drift estimated by the AR model. This autocorrelation
function shows that after removing the estimated drift, the
remaining signal is mainly white noise.

It should be noted that such a higher order AR model is
difficult to use with KF, despite the fact that it is a linear
model. This is because for each inertial sensor error to be
modeled the state vector has to be augmented with a number
of elements equal to the order of the AR model (which is
120). Consequently, the covariance matrix, and other matri-
ces used by the KF will increase drastically in size (an
increase of 120 in rows and an increase of 120 in columns
for each inertial sensor), which make this difficult to realize.

If the stochastic gyroscope drift is modeled by either GM,
or AR, or PCI in the system model, the state vector has to be
augmented accordingly. The normal way of doing this
augmentation will lead to, for example in the case of AR
with order 120, the addition of 120 states to the state vector.
Since this will introduce a lot of computational overhead and
will require an increase in the number of used particles,
another approach is used in this work. The flexibility of the
models used by PF was exploited together with an approxi-
mation that experimentally proved to work well. The state
vector in PF is augmented by only one state for the gyro-
scope drift. So at the k-th iteration, all the values of the
gyroscope drift state in the particle population of iteration
k-1 will be propagated as usual, but for the other previous
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drift values from k-120 to k-2, only the mean of the
estimated drift will be used and propagated. This implemen-
tation makes the use of higher order models possible without
adding a lot of computational overhead. The experiments
with Mixture PF demonstrated that this approximation is
valid.

If 120 states were added to the state vector, i.e. all the
previous gyroscope drift states in all the particles of the
population of iteration k—-120 to k-1 were to be used in the
k-th iteration, then the computational overhead would have
been very high. Furthermore, when the state vector is large
PF computational load is badly affected because a larger
number of particles may be used. But this is not the case in
this implementation because of the approximation discussed
above.

Updating the Gyroscope Drift Using GPS

For the solution proposed in this Example, when a system
model is used for the gyroscope drift (i.e. the state vector is
augmented with a state for the gyroscope drift), the proce-
dure undertaken to have a measurement update for this state
is described in the following discussion. The update for the
gyroscope drift is carried out when two conditions are
satisfied: when there is no GPS outage and the vehicle is in
motion. The fact that the vehicle is in motion is detected
through the speed readings (in this example it is the speed
derived from the odometer). The Azimuth calculated from
GPS is obtained as follows

VE,GPS
s £

VkN'GPS

This GPS-derived Azimuth is compared to another one
computed from unaided mechanization of the reduced multi-
sensor system. For this purpose, another version of the
motion model is run independently outside the PF without
the process noise term, (the process noise term is for
example w,_,=[88,_,°? dw,_,*]"=[0 0]” in the case of 2D
dead reckoning, and in case of the 3D reduced system of
Example 1 it was described earlier). A" is the azimuth
calculated from this unaided mechanization. It is to be noted
that the unaided mechanization is a 2D one in case of 2D
dead reckoning and a 3D one in the case of reduced system
from Example 1.
For 2D Dead Reckoning/GPS Integration

For 2D dead reckoning, the update value for the gyro-
scope drift is derived from the following equations. We have

dAMech
dt

o Mech iy 4 Mechy o Mech
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According to the mechanization output, the gyroscope
reading that should have been associated with the motion
between time steps k-1 and k (where the index k here is not
the same as the one used for the gyroscope rate but for the
GPS rate) is
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Similarly, according to GPS readings, the gyroscope
reading that should have been associated with the motion
between time steps k-1 and k is

GPS _ 4GPS f.GPS . GPS.__ GPS
7,GPS AT - AL e . aps Vil sinAPtang”y
W = twsingly +
A (Ry +h)
f.GPS _ E,GPS\2 N,GPS\2
where v; |~ = (v,(,l ) +(v Z ) .

For 2D dead reckoning, the update value for the gyroscope
drift to be used at the k-th GPS update is

2Update _ . z,Mech
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k-1
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For 3D “Reduced Number of Inertial Sensors with Speed
Readings”/GPS Integration

For 3D “reduced number of inertial sensors with speed
readings”, the update value for the gyroscope drift is derived
from the following equations. From the Azimuth equation in
the 3D “reduced number of inertial sensors with speed
readings” system model in Example 1, one have
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-continued
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Further mathematical manipulation of trigonometric func-
tions shows that:

—[ COSPy_1 COS, r +{1 —(UU)Z}d_A —(sinpy_;cos
T—Wuy Pi-1 el a7 [t Pi-1
ry_ysiny;_jcosyi_; + cospk,lsinrk,lcosrk,lsinzy,f,l)
dp . .
a7 et +( cospy_y sinr_ysiny;_ cosy;_| —
. . dr
Smpkflsmz%ffl)a kil}
dy* 2
4 B - UU
“i-1 ar ! —COSPy_1COSFy_1 [{ ) }
d Ut
= U2
E(tan (W]] {1 - WYy
A . .
a7 e +(sinpy_jcosry_ siny;_  cosyi_; +

COS Py SIY_1 COSF_| sinzy,f,l)

10

15

25

30

35

40

45

55

44

-continued
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According to the mechanization output, the gyroscope
reading that should have been associated with the motion
between time steps k-1 and k (where the index k here is not
the same as the one used for the gyroscope rate but for the
GPS rate) is m,_,****"  According to GPS readings, the
gyroscope reading that should have been associated with the
motion between time steps k-1 and k is w,_,=“**. The
update value of the gyroscope drift (to be used at the k-th
GPS update) is dw,_ TPie=q, Meh_g, S Tt
should be noted that the calculation of pitchp,_, and rollr, |
depend only on the accelerometers and odometer in the
reduced system, so these values are the same for the expres-
sions of @,_,*™*" and w,_,*“*. Thus the terms in the
above equation, which involve

dp d dr
a7 [t an P
are nearly the same for both ®,_,***" and w,_,“** and

will be cancelled together when calculating their difference.

Thus, For 3D “reduced number of inertial sensors with
speed readings”, the update value of the gyroscope drift (to
be used at the k-th GPS update) is
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-continued
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Experimental Results

The aim of the presented trajectory is to examine the
performance of the proposed 2D Navigation solution using
Mixture PF with both PCI and higher order AR. The two
proposed combinations are compared to four other 2D
solutions:

1. Mixture PF with Gauss-Markov (GM) model for the

gyro drift,

2. Mixture PF with only white Gaussian noise (WGN) for

the stochastic gyro errors, and

3. two different KF with GM model for the gyro drift.

All the PF solutions, except the one that uses WGN, use
the idea of updating the gyroscope drift from GPS data when
appropriate, one of the KF solutions uses this same idea of
update, while the other does not benefit from it. The errors
in all the estimated solutions are calculated with respect to
the NovAtel reference solution.

The PF presented results are achieved with the number of
samples equal to 100. Using 100 samples with 20 samples
predicted from observation likelihood, one iteration of the
Mixture PF for 2D dead reckoning (with the AR model for
gyroscope drift) takes 0.00323 seconds (average of all
iterations) using MATLLAB 2007 on an Intel Core 2 Duo
T7100 1.8 GHz processor with 2 GB RAM. One iteration of
the Mixture PF for 2D dead reckoning (with the PCI model
for gyroscope drift) takes 0.004 seconds on the same
machine. So the algorithm can work in real-time.

Road Trajectory

FIG. 23 shows the road test trajectory, which starts in
Montreal, Quebec, Canada and ends in Kingston, Ontario,
Canada. This trajectory has some urban roadways in Mon-
treal, and then it is on the highway from Montreal to
Kingston. This road test was performed for nearly 190
minutes of continuous vehicle navigation and a distance of
around 303 km. The ultimate check for the proposed sys-
tem’s accuracy is during GPS signal blockage, which can be
intentionally introduced in post processing. Since the pre-
sented solution is loosely-coupled, the outages used have
complete blockage. Twelve outages are used (shown as
circles overlaid on the map in FIG. 23), they are simulated
GPS outages. The trajectory is used twice, once with 60-sec-
ond outages and once with 180-second outages. The simu-
lated outages were chosen such that they encompass straight
portions and turns, the majority of which are at high speeds.
Since outages of fixed durations are used, testing high speed
cases shows the robustness of the proposed solutions
because higher speeds will cause more position errors due to
azimuth errors.

The trajectory uses the NovAtel OEM4 GPS receiver and
the inertial sensors from the MEMS-based Crossbow
IMU300CC-100 (see Table 15). As mentioned earlier the
speed readings are collected from the vehicle odometer
through OBD-II. The reference solution used for assessment
of the results is a commercially available solution made by
NovAtel, it is a SPAN unit integrating the high cost high end
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tactical grade Honeywell HG1700 IMU (see Table 17) and
the NovAtel OEM4 dual frequency receiver.
The Case with 60-Second GPS Outages

Tables 9 and 10 show the root mean square (RMS) error
and the maximum error in the estimated 2D horizontal
position during the twelve introduced 60-second GPS out-
ages for the six compared solutions. One benefit of the
technique for updating the gyroscope stochastic drift from
GPS (when appropriate) and mechanization can be seen by
comparing the two KFs with GM models. The KF that uses
the proposed measurement update for gyroscope drift per-
forms much better than the one without updates for this drift.
The results also show that the Mixture PF with GM outper-
forms the KF with GM. This is due to the ability of PF to
deal with nonlinear system and measurement models, while
the KF uses linearized error models. Furthermore, the Mix-
ture PF with GM outperforms the Mixture PF with WGN
because of the modeling of the stochastic drift of the
gyroscope using GM, while the WGN solution assumes
there is no stochastic drift (the stochastic error is only
WGN). Except for a few cases, the performance of Mixture
PF with WGN generally degrades with time because there is
no modeling for the stochastic drift that generally increases
with time. This fact will be more apparent when 180-second
outages are examined.

The average performance of PF with WGN is better than
the KF with GM because of the first 7 outages (except
outage number 4) where the influence of the drift is still
small. Another reason for the comparable results of PF with
WGN and KF with GM, despite the fact that the former
assumes there is no drift, is the better estimate for the
Azimuth angle before the outage in the PF because of the
nonlinear measurement model presented in the previous
chapter for the RISS, in which the Azimuth angle can benefit
from GPS updates. Moreover, these results demonstrate that
the Mixture PF with PCI and the Mixture PF with AR have
approximately similar performance and they outperform the
other solutions. This may be because of both the nonlinear
filtering and the use of more sophisticated models for the
stochastic gyroscope drift. Comparing the PCI, higher order
AR, and 1% order GM (all used with PF) shows that the
traditional GM model may not be the most adequate model
for the stochastic drift of MEMS-based gyroscopes.

For MEMS-based sensors integrated with GPS, these
results demonstrate the good performance of the two pro-
posed navigation solutions. It should be noted also that these
outages are mostly high speed ones, so the travelled distance
during outages is a large distance (as seen in Tables 9 and 10)
and any Azimuth errors will be more influential in position
errors. In average, the maximum position error for the two
proposed solutions is about 7 meters in 1.8 kilometers.
The Case with 180 Seconds GPS Outages

Tables 11 and 12 show the RMS error and the maximum
error in the estimated 2D horizontal position during the
twelve simulated 180-second GPS outages for the six solu-
tions. The KF with measurement update for the gyroscope
stochastic drift outperforms the KF without update for the
drift. This may be because a compensated gyroscope drift
that is not well compensated for may lead to an Azimuth
error (proportional to outage duration) that in turn leads to
a greater error in position proportional to outage duration,
azimuth error and the vehicle’s velocity. Thus the position
error due to uncompensated gyroscope drift is proportional
to both the velocity and the square of outage duration. The
effect of the measurement update for the gyroscope drift is
much more apparent in the 180-second case.
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As in the 60-second case, these 180-second results show
that the Mixture PF with GM performs better than KF with
GM, but that their performance difference is not as much as
in the 60-second case. This may be because a mis-modeled
gyroscope drift error will lead to an Azimuth error that in
turn leads to a greater error in position. So in 180-second
outages, the mis-modelling of the 1% order GM is a major
factor. Furthermore, the Mixture PF with GM outperforms
the Mixture PF with WGN because of the modeling of the
stochastic drift of the gyroscope (even using GM), while the
WGN solution assumes there is no stochastic drift. The
performance of Mixture PF with WGN is generally degrad-
ing with time because there is no modeling for the stochastic
drift that generally increases with time; this fact is more
obvious here because of the 180-second outages. The aver-
age performance of PF with WGN is now less than the KF
with GM despite the fact that it is better in some of the early
outages where the influence of the stochastic drift is smaller.

Again, it can be seen that the Mixture PF with PCI and the
Mixture PF with AR have very similar performance and they
greatly outperform the other solutions. While in the 60-sec-
ond case the ratio between the average of maximum errors
for these 2 solutions and the other solutions (except KF
without measurement update for the gyroscope drift) were
about 1:2 or 1:3, these ratios are 1:5 and 1:6 in the 180
seconds outages. This greater difference in performance may
be because of the better modeling of the stochastic gyro-
scope drift, which becomes more drastic when the outage
duration increases. These results provides further evidence
that the traditional 1% order GM process is not the most
suitable for modeling the stochastic drift of MEMS-based
gyroscopes. On average, the maximum position error for the
two proposed solutions is about 28 meters in 5.3 kilometers.

FIGS. 24, 26 and 28 show the sections of the trajectory
during the 180 seconds GPS outages numbers 8, 9, and 10,
respectively. These figures show the reference solution and
all the solutions except the KF without measurement update
for the gyroscope drift (the worst solution). To illustrate the
vehicle dynamics during these three outages FIGS. 25, 27
and 29, respectively, show the forward speed of the vehicle
and its azimuth angle, both from the NovAtel reference
solution.

To examine the performance during turns, the 8%, 9% and
10™ GPS outages are examined. The 8 outage, which starts
at the 125” minute from the beginning of the trajectory, is
during a couple of small turns of about 25° each and the
speed of the vehicle is about 118 km/h. The maximum
horizontal position error for PF with PCI is 15.4 meters,
while for PF with AR is 15.02 meters, for PF with GM is
145.63 meters, for PF with WGN is 220.75, and for KF with
GM and gyroscope drift measurement update is 183.4
meters. These results conform to the previous discussion on
the performance of the different solutions. The 9% outage,
which starts at about the 144” minute of the trajectory,
involves a 60° turn followed by a 45° one then another of
30° and the vehicle speed is about 118 km/h. The maximum
horizontal position error for PF with PCI is 27.14 meters,
while for PF with AR is 25.17 meters, for PF with GM is
229.6 meters, for PF with WGN is 252.54, and for KF with
GM and gyroscope drift update is 276.62 meters. This
outage is the only exception, in the last five outages of the
trajectory, where the result of PF with WGN is better than
KF with GM and gyroscope drift update. The 10” GPS
outage, which starts at the 150” minute of the trajectory, is
during a sequence of slight turns of about 17°, 25°, and 17°.
The speed is about 118 km/h. The maximum horizontal
position error for PF with PCI is 34.2 meters, while for PF
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with AR is 59.54 meters, for PF with GM is 208.81 meters,
for PF with WGN is 269.03, and for KF with GM and
gyroscope drift update is 238.22 meters.

To show the performance during straight portions of the
trajectory, the 7% GPS outage is an example, where the
vehicle’s speed is about 115 km/h. This outage starts at the
1117 minute from the beginning of the trajectory, and the
travelled distance during this outage is nearly 5.75 km. The
maximum horizontal position error for PF with PCI is 15.72
meters, while for PF with AR is 13.5 meters, for PF with GM
is 147.57 meters, for PF with WGN is 164.15, and for KF
with GM and gyroscope drift measurement update is 180.4
meters.

The advantage of suitable modeling of the MEMS-based
gyroscope stochastic drift is apparent from these results. For
MEMS-based inertial sensors, these results show that the
two proposed solutions (PF with either PCI or higher order
AR) have improved performance during long GPS outages
encompassing either straight portions or turns, even at high
speeds.

Summary of the Results

The results emphasized the benefit of the proposed tech-
nique for obtaining measurement updates for the stochastic
drift of the gyroscope from both mechanization and GPS
(when appropriate), which can be seen by comparing the
results of the two KFs, with and without the use of these
updates. The results also demonstrated that Mixture PF
improved upon KF for this integration problem, due to the
use of nonlinear system and measurement models instead of
linearized models. Furthermore, the results showed that the
Mixture PF with GM model for the stochastic drift has a
better performance than Mixture PF with WGN, because the
latter assumes that there is no drift and the stochastic error
is only white noise. Moreover, the results demonstrated that
the 1st order GM process is not the most suitable model for
this MEMS-based gyroscope drift, and that more sophisti-
cated models can give far better performance especially in
long GPS outages where the gyroscope error is more influ-
ential.

Having run the compared solutions on several trajectories
and considering the maximum error in horizontal position-
ing, the KF with measurement update for the gyroscope
stochastic drift achieved an average improvement of
approximately 64% over KF without this update for the drift
in the case with 60-second outages, and an improvement of
62% in the case with 180-second outages. Mixture PF with
PCI achieved an average improvement of approximately
47% over Mixture PF with GM in the case with 60-second
outages, and an improvement of 78% in the case with
180-second outages. Furthermore, Mixture PF with PCI
achieved an average improvement of approximately 63%
over Mixture PF with WGN in the case with 60-second
outages, and an improvement of 83% in the case with
180-second outages. Moreover, Mixture PF with PCI
achieved an average improvement of approximately 72%
over KF with GM and measurement updates for the gyro-
scope drift in the case with 60-second outages, and an
improvement of 82% in the case with 180-second outages.
Finally, Mixture PF with PCI achieved an average improve-
ment of approximately 90% over KF with GM and without
updates for the gyroscope drift in the case with 60-second
outages, and an improvement of 93% in the case with
180-second outages.

The results showed that the proposed navigation solution
using Mixture PF with PCI and the one with higher order AR
outperformed all the other solutions in the comparison and
showed similar, consistent and good performance for
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MEMS-based inertial sensors/GPS integration during GPS
outages even for prolonged durations. Moreover, with the
low number of samples used and the presented running
times, the Mixture PF algorithm can work in real-time.

The use of Mixture PF with higher order AR is recom-
mended because it is simpler, its running time is less, and it
can provide similar performance to PCI. PCI is reported in
this work as it was the general nonlinear system identifica-
tion technique that led to the finding that the drift model had
a maximum lag of 120 and degree of polynomial equal to 1,
which subsequently led to trying a linear AR model with
order 120.

Example 4

Automatic Detection of GNSS Degraded
Performance

This example presents the technique used for automatic
assessment of GNSS information and detection of degraded
performance. One of the criteria used in the checking of
GNSS degraded performance is the number of satellites. If
the number of satellites visible to receiver is four or more,
the GPS reading passes the first check. The second check is
using the dilution of precision (DOP) of the calculated
position solution by the GNSS receiver. Both the horizontal
DOP (HDOP) and vertical DOP (VDOP) are used. Despite
these two checks, some GNSS readings with degraded
performance (especially because of some reflected signals
reaching the receiver and not the original signal because of
loss of direct line-of-sight between some satellites and the
receiver) may still find their way to update the filter and can
jeopardize its performance. Thus further checks have to be
used.

Since this is an integrated solution, and since Mixture PF
with the solution in the former examples and a robust model
for gyroscope drift provide very good position and attitude
calculations, even for long periods of unaided operation,
these facts are exploited to assess GNSS position and
velocity observations. Furthermore motion constraints on
land vehicles are exploited as well, in connection with the
speed and sensors readings.

1. The first check is based on assessing the new GNSS
horizontal position reading and subtracting from it the
current estimate of position. If this difference is much
higher than what it should be when compared to the
vehicle speed obtained from OBD II which is an accurate
quantity, then this indicates the presence of degradation
and the new GNSS update is discarded.

2. The second check for GNSS position is concerned with
the altitude component. The 3D solutions in either
Example 1 or Example 2 provide very good altitude
estimates even during very long durations of unaided
performance, this fact is used together with the non-
holonomic constraint of no perpendicular vertical motion
for land vehicles to assess the GNSS altitude of the new
reading. Since altitude is a weak component in GNSS, this
check helps in detecting GNSS degraded performance and
discarding the update. The barometer calculated altitude
can also be used to assess the GNSS altitude.

3. The third check is for azimuth update from GNSS
velocities. This update is not used unless the vehicle is in
motion, which is very well detected through the OBD II
speed readings. Furthermore, to have an azimuth update,
the HDOP is checked for a lower threshold than the one
used for position update. This last check is because the
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azimuth calculated from GNSS is a sensitive quantity. If

the check is not met, azimuth update from GNSS is not

performed.

4. The fourth check is again for azimuth update from GNSS.
This check exploits the motion constraints on land
vehicles. The current azimuth calculated from GNSS is
compared to the previous one which is 1 sec before while
taking care of the angle circularity. A large difference
which can’t correspond to land vehicle motion indicate
erroneous update from GNSS. Furthermore, the current
azimuth obtained from GNSS is as well compared to the
current estimate of the vehicle azimuth, this also shows
the validity of this azimuth update.

5. The fifth check concerns the update of the gyroscope drift.
If the vehicle is in motion detected through OBD II
readings, GNSS might be used for this update depending
on further checks; if the vehicle is stationary, this fact is
also exploited to update the gyroscope drift without
GNSS. Since this gyroscope drift update from GNSS is
sensitive, the HDOP is checked for a lower threshold than
the one used for position update in order to enable this
drift update.

A trajectory in downtown Toronto was collected, that
suffered from degraded GNSS performance (either multi-
path, reflections with loss of direct line-of-sight, or complete
blockage).

The proposed navigation solution using Mixture PF for
3D “reduced number of inertial sensors with speed read-
ings”/GPS integration and using the higher order AR model
(AR120) to model the stochastic drift of the MEMS-based
gyroscope are the one used in all the following results
reported herein.

Downtown Toronto Trajectory
The road test trajectory in downtown Toronto, Ontario,

Canada can be seen in FIG. 30. This road test was performed
for nearly 128 minutes of continuous vehicle navigation and
a distance of around 33.5 km was traveled. This trajectory is
in a downtown scenario with urban canyons in some parts,
and some under-paths, and it has a lot of degraded GPS
performance because of either multipath, severe reflections
with loss of direct line-of-sight, or complete blockage. The
portions with degraded GPS performance encompass
straight portions, turns, and frequent stops.

In this trajectory, the inertial sensors used for 3D “reduced
number of inertial sensors with speed readings” are from the
Crossbow IMU300CC-100 (see Table 15), the GPS receiver
used is the NovAtel OEMV-1G, which is a single frequency
receiver. As mentioned earlier the speed readings are col-
lected from the vehicle odometer through OBD-II. The
reference solution used for assessment of the results is a
commercially available solution made by NovAtel, it is a
SPAN unit integrating the high cost high end tactical grade
Honeywell HG1700 IMU (see Table 17) and the NovAtel
OEM4 dual frequency receiver.

FIGS. 31, 32 and 33 show the reference, GPS, and the
proposed solution during sections of this trajectory with
urban canyons. The NovAtel OEMV-1G GPS receiver suf-
fered from severe reflections with loss of direct line-of-sight
and from some complete blockage during the urban canyons
as demonstrated in the figures. FIG. 34 shows the reference,
GPS, and the proposed solution during an under-path under
the Gardiner Expressway, where the GPS signal suffered
from a complete blockage.

When the GPS quality is extremely low, its readings are
discarded completely, and the Mixture PF with 3D “reduced
number of inertial sensors with speed readings” operates in
prediction mode relying on the higher order AR model
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correction for the stochastic gyroscope drift. In the follow-
ing discussion, when GPS readings are discarded, this will
be called a GPS outage. The trajectory was full of a very
large number of such outages. FIG. 35 show the maximum
error in position during only the outages whose duration
exceeds 100 seconds. In FIG. 35 a comparison of maximum
position error is presented between Mixture PF and KF. The
Mixture PF is for 3D “reduced number of inertial sensors
with speed readings”/GPS integration with the AR model of
order 120 for the gyroscope drift, the update for gyroscope
drift explained earlier, and the automatic detection of GPS
degraded performance. The KF is for 3D “reduced number
of inertial sensors with speed readings”/GPS integration
with 1% order Gauss Markov model for the gyroscope drift,
the update for gyroscope drift explained earlier, and the
automatic detection of GPS degraded performance. So both
share everything except that the first is Mixture PF with the
nonlinear models described in Examples 1 and 2 and with
AR of order 120 (i.e. options that can’t be available for KF),
the second is KF with linearized models and 1% order Gauss
Markov model. Moreover, it should be noted that since the
KF uses linearized models, it does not benefit from the
corrected azimuth calculation that accounts for the case
where the gyroscope is in a tilted plane not in the pure
horizontal East-North plane. This is also one of the draw-
backs of KF for 3D “reduced number of inertial sensors with
speed readings” when compared to the Mixture PF with 3D
“reduced number of inertial sensors with speed readings”.

From the results in FIG. 35, it can be noted that the overall
performance of Mixture PF outperforms that of KF. It should
be noted that this trajectory has some portions at low speed
and with frequent stops. It can be noted that the difference
in performance between the Mixture PF with 3D RISS and
KF with 3D “reduced number of inertial sensors with speed
readings” is not as big in some GPS outages as compared to
other outages. The outages with lower speeds and frequent
stops, have less difference between the two compared filters.
The reason for this is the good accuracy of the vehicle speed
obtained from the OBD II interface; furthermore this speed
reading is exactly zero during the frequent stops, which
bounds the position error growth. Furthermore, in all the
reduced sensors solutions the only remaining main source of
error is the vertically aligned gyroscope used for estimating
the azimuth angle. Since the non-stationary position errors
are related to the azimuth errors modulated by the velocity,
lower speeds causes less positional errors due to azimuth
errors. Whenever the traveled distance is higher or the
vehicle speed is higher, the enhancement provided by Mix-
ture PF will be more apparent.

This example presented results in very challenging GPS
environments. These scenarios are encountered in real-life
trajectories where accurate navigation is needed to reliably
assist and guide the driver to his/her destination. The navi-
gation solution used in these results is Mixture PF for 3D
“reduced number of inertial sensors with speed readings™/
GPS loosely-coupled integration, with AR of order 120 for
modeling the stochastic gyroscope drift as well as the
formula derived earlier for providing measurement update
for this drift from GPS when adequate, and the technique for
automatic detection of GPS degraded performance as dis-
cussed above.

The performance of the proposed technique was also
tested for different low cost GPS receivers and different low
cost MEMS-based inertial sensors (results not shown). The
positioning performance was demonstrated in different
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downtown environments. Furthermore, the repeatability of
the technique was also tested by several repeated runs
(results not shown).

The proposed navigation solution for land vehicles is
continuous, accurate and robust for low cost sensors. It
showed consistent levels of accuracy. Keeping in mind that
modern land vehicles are already equipped with inertial
sensors, GPS receivers, and of course an odometer, this
solution can exploit them and provide reliable real-time
navigation at nearly no extra cost.

Example 5

Mixture Particle Filter for Tightly-Coupled Inertial
Sensors/GNSS Integration

The present example attempts to describe the present
navigation module programmed to utilize a Mixture PF with
the system model of either Example 1 or Example 2, and the
higher order AR modeling for the stochastic drift of inertial
sensors, as well as the proposed update for this drift from
GNSS when adequately available, and from tightly-coupled
integration of the speed and the inertial sensors with raw
GNSS measurements.

Background

By way of background, in loosely-coupled integration, at
least four satellites are needed to provide acceptable GNSS
position and velocity, which are used as measurement
updates in the integration filter. One advantage of tightly-
coupled integration is that it can provide GNSS measure-
ment updates even when the number of visible satellites is
three or fewer, thereby improving the operation of the
navigation system in degraded GPS environments by pro-
viding continuous aiding to the inertial sensors even during
limited GNSS satellite availability (like in urban areas and
downtown cores).

Tightly-coupled integration takes advantage of the fact
that, given the present satellite-rich GPS constellation as
well as other GNSS constellations, it is unlikely that all the
satellites will be lost in any canyon. Therefore, the tightly
coupled scheme of integration uses information from the
few available satellites. This is a major advantage over
loosely coupled integration with INS, which fails to acquire
any aid from GNSS and considers the situation of fewer than
four satellites as an outage. Another benefit of working in the
tightly coupled scheme is that satellites with bad measure-
ments can be detected and rejected.

In tightly-coupled integration, GNSS raw data is used and
is integrated with the inertial sensors. The GNSS raw data
used in the present navigation module in this example are
pseudoranges and Doppler shifts. From the measured Dop-
pler for each visible satellite, the corresponding pseudorange
rate can be calculated. In the update phase of the integration
filter the pseudoranges and pseudorange rates can be used as
the measurement updates to update the position and velocity
states of the vehicle. The measurement model that relates
these measurements to the position and velocity states is a
nonlinear model.

As is known, the KF integration solutions linearize this
model. PF with its ability to deal with nonlinear models
better capable of giving improved performance for tightly-
coupled integration because it can use the exact nonlinear
measurement model, this is in addition to the fact that the
system model is always (in tightly or loosely coupled
integration) a nonlinear model.
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Nonlinear Models for Tightly-Coupled Integration

As mentioned earlier, there are three main observables
related to GPS: pseudoranges, Doppler shift (from which
pseudorange rates are calculated), and the carrier phase. The
present example utilizes only to the first two observables.

Pseudoranges are the raw ranges between satellites and
receiver. A pseudorange to a certain satellite is obtained by
measuring the time it takes for the GPS signal to propagate
from this satellite to the receiver and multiplying it by the
speed of light. The pseudorange measurement for the m”
satellite is:

p=clt—t,)

where p™ is the pseudorange observation from the m”
satellite to receiver (in meters), t, is the transmit time, t,.is the
receive time, and ¢ is the speed of light (in meters/sec).

For the GPS errors, the satellite and receiver clocks are
not synchronized and each of them has an offset from the
GPS system time. Despite the several errors in the pseudor-
ange measurements, the most effective is the offset of the
inexpensive clock used inside the receiver from the GPS
system time.

The pseudorange measurement for the m* satellite, show-
ing the different errors contaminating it, is given as follows:

pr=r"+cdt,—cdt el T e

where ™ is the true range between the receiver antenna at
time t, and the satellite antenna at time t, (in meters), dt, is
the receiver clock offset (in seconds), 0t; is the satellite clock
offset (in seconds), I is the ionospheric delay (in seconds),
T™ is the troposheric delay (in seconds), €, is the error in
range due to a combination of receiver noise and other errors
such as multipath effects and orbit prediction errors (in
meters).

The incoming frequency at the GPS receiver is not exactly
the L1 or L.2 frequency but is shifted from the original value
sent by the satellite. This is called the Doppler shift and it is
due to relative motion between the satellite and the receiver.
The Doppler shift of the m” satellite is the projection of
relative velocities (of satellite and receiver) onto the line of
sight vector multiplied by the transmitted frequency and
divided by the speed of light, and is given by:

{(V" =) 1™,
c

D" =

where v"=[v,", v.”", v.”"] is the m? satellite velocity in the
ECEF frame, v=[v,, v,, v,] is the true receiver velocity in the

ECEF frame, L, is the satellite transmitted frequency, and

N L PN NP -

- =11y
Vo= am? 4 =y (2= 22
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is the true line of sight vector from the m? satellite to the
receiver. .
Given the measured Doppler shift, the pseudorange rate p™
is calculated as follows:
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Nonlinear Measurement Model

After compensating for the satellite clock bias, Iono-
spheric and Tropospheric errors, the corrected pseudorange
can be written as:

P =r"+cot,+e,™

where, ép’" represents the total effect of residual errors. The
true geometric range from m™ satellite to receiver is the
Euclidean distance and is given as follows:

PN (o™ (™ 22 -

where x=[X, vy, z] is the receiver position in ECEF frame,
x"=[x", y", z"|" is the position of the m? satellite at the
corrected transmission time but seen in the ECEF frame at
the corrected reception time of the signal. Satellite positions
are initially calculated at the transmission time in the ECEF
frame at transmission time as well not at the frame at the
time of receiving the signal. This time difference may be
approximately in the range of 70-90 milliseconds, during
which the Earth and the ECEF rotate, and this can cause a
range error of about 10-20 meters. To correct for this fact,
the satellite position at transmission time has to be repre-
sented at the ECEF frame at the reception time not the
transmission time. One can either do the correction before
the measurement model or in the measurement model itself.
In the present example, the satellite position correction is
done before the integration filter and then passed to the filter,
thus the measurement model uses the corrected position
reported in the ECEF at reception time.

The details of using Ephemeris data to calculate the
satellites’ positions and velocities are known, and can sub-
sequently be followed by the correction mentioned above.

In vector form, the equation may be expressed as follows:

P k=" +b, e,

where b,=cdt,. is the error in range (in meters) due to receiver
clock bias. This equation is nonlinear. The traditional tech-
niques relying on KF used to linearize these equations about
the pseudorange estimate obtained from the inertial sensors
mechanization. PF is suggested in this example to accom-
modate nonlinear models, thus there is no need for linear-
izing this equation. The nonlinear pseudorange measure-
ment model for M satellites visible to the receiver is:

= x| + b, + 2,

M M =M
o il =x")l+ b, + 8

Vo= -y e =2 +b, 42,

VxR 4 (ym 2 (MR 4 by 2

But the position state x here is in ECEF rectangular coor-
dinates, it should be in Geodetic coordinates which is part of
the state vector used in the Mixture PF. The relationship
between the Geodetic and Cartesian coordinates is given by:

x (Ry + h)cospcosA
y|=| (Rw+Hhcospsind
z {Ry(1 — %) + h}sing
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Where R, is the normal radius of curvature of the Earth’s
ellipsoid and e is the eccentricity of the Meridian ellipse.
Thus the pseudorange measurement model is:

((Ry + h)cosgcosA — x1)2 +
((Ry + h)cosgsind — y1)? + + b, + éi, 10
Pe (R (1 —e2) + hsing — z1)?
M 2
Pe ((Ry + h)cospcosA — xM )* + s
((Ry + h)cosgsind — yM)2 + 4+ b+ éﬁ"
({Rn (1 — €2) + h}sing — zM )2
The true pseudorange rate between the m” satellite and 20
receiver is expressed as
PP (Vo VL (V= )L (VY. )
The pseudorange rate for the m™ satellite can be modeled as 25
follows:
pr= 1;”(VX—v;")+1;”(vy—v'y”)+lf(vz—v;")+céi,+£? 30

= v =)+ 150, = v + 150, =) +d,+£’§

where dt, is the receiver clock drift (unit-less), d, is the ;
receiver clock drift (in meters/sec), 8™ is the error in
observation (in meters/sec).

This last equation is linear in velocities, but it is nonlinear
in position. This can be seen by examining the expression for
the line of sight unit vector above. Again, there is no need
for linearization because of the nonlinear capabilities of PF.
The nonlinear measurement model for pseudorange rates of
M satellites, again in ECEF rectangular coordinates is:

40

45

ot li(vx—vi)+1;(vy—v;)+1i(vz—vi)+d,+£;,
. 50

pM li"(vx—vi”)+1’y”(vy—vyM)+1y(vZ—viw)+d,+£g’

The velocities here are in ECEF and need to be in local-level 55
frame because this is part of the state vector in Mixture PF.
The transformation uses the rotation matrix from the local-
level frame to ECEF (R,®) and is as follows:

60
Vx Ve —sind  —sinpcosA  cos@cosA [ ve
Vy | = Rf| va | =| cosA  —singsind cospsind || v,
Vv, Vi 0 cose sing Vi
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Furthermore, the line of sight unit vector from m™ satellite
to receiver will be expressed as follows:

((Ry + h)cosgcosd —x™), 17
((Ry + h)cosgsind — y™),

{Ry(1 = &) + h)sing — 27) —pm )

X2ty tz

((Ry + h)cospcosd — xm)2 +
((Ry + h)cosgsind — ym)2 +
({Ry (1 — e2) + Rlsing — zm)

The foregoing combined equations constitute the overall
nonlinear measurement model for M visible satellites used
in the present example for tightly-coupled integration using
Mixture PF.

Augmenting the System Model

The system model can be augmented with two states,
namely: the bias of the GPS receiver clock b, and its drift d,.
These two are included as states and the state vector can be
augmented with these two quantities. Both of these are
modeled as follows:

where w, and w, are the noise terms In discrete form it can
be written as:

[ bry
dr i

where At is the sampling time. This model is used as part of
either the system model described in Example 1 or the
system model described in Example 2.

Mixture PF for Tightly-Coupled 3D “Reduced Number of
Inertial Sensors with Speed Readings”/GPS Integration

} _ [br,k—l + (drjo1 + Wpi-1)AL
- drg-1 +wWap-1A1

The present example attempts to describe the present
navigation module programmed to utilize a Mixture PF for
3D “reduced number of inertial sensors with speed read-
ings”/GNSS integration with a higher order AR model for
the stochastic drift of the vertical gyroscope, as well as the
proposed update for this drift from GNSS when adequately
available, and from tightly-coupled integration of 3D
“reduced number of inertial sensors with speed readings”
with raw GNSS measurements.

As discussed, the measurement model in the case of
tightly-coupled integration is a nonlinear model that relates
the GPS raw measurements (pseudorange measurements
and pseudorange rates) at a time epoch k, z,, to the states at
time k, x,, and the measurement noise €,. The nonlinear
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measurement model for tightly-coupled integration can be in
the form:
2 =h(x.€)
where
oAlpe - bkl s F.)kM]T
ek:[:spykl - épkM ebykl - EékM]T

For 3D “reduced number of inertial sensors with speed
readings”, together with modeling the stochastic drift of the
vertical gyroscope using a higher order AR model, and with
the addition of the two states for GPS receiver clock bias and
drift, the state vector is:

X[t hka\’kfxpka P00, br,k! dr,k] r

where ¢, is the latitude, A, is the longitude, h, is the altitude,
v/ is the forward velocity, p, is the pitch angle, r, is the roll
angle, A, is the azimuth angle, dw,” is the stochastic drift of
the gyroscope, b, ; is the bias of the GPS receiver clock, and
d,, is its drift.

Thus, the system model can be formulated, in the case of
using the two horizontal accelerometers, as:

Pk
A
fy

Vi

Pr
Y

A

St g

bry
dri

X = = f(xg—t1s oy, Wi-1) =

N v{,lcosAk,lcospk,l
Pr-1 Rog + Tt

N v{,lsinAk,lcospk,l
k-1 +

(Ry + hy—1)cosgy;
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or, in the case of using three accelerometers, as:

Pk
A
fy
il
Pr
== f -1 the—1, Wi—1) =
%
Ag
Sy
bry
drk
v{,lcosAk,lcospk,l
Qo] + ————————— A1
Ry + Wy
v{,lsinAk,lcospk,l
Mg+ m——
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where

UF = SINAg_1COSPg_1COSY_| —
(cosAy_jcosry_y + sinA,_;sinp,_ysinr_;)sinyf_;

uN = COSA_| COSPy_|COSYE_| —
(—sinAy_jcosr,_y + cosA,_ysinp,_;sinr,_ siny;_;

Yie1 = (g — dwi_)Ar

And all the other variables are as explained in Example 1.

In order to relate this state to the measurement model
mentioned in previous section, the following velocity trans-
formation from body frame to local-level frame is needed:

Vi 0 v{sinAkcospk
7 [

Vi | = Rpy v{ = v,(fcosAkcospk
u

Vi 0 vl sinp;

Hybrid Loosely/Tightly Coupled Scheme

The proposed navigation module can be a hybrid solution
and attempts to take advantage of the superior performance
for low cost MEMS-based inertial sensors (which relies on
azimuth update from the GNSS when adequate and update
of'the gyroscope drift from GNSS when suitable), as well as
the benefits of tightly-coupled integration.

To give more insight about some of the factors that make
such a hybrid scheme needed, a brief description follows. As
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described in earlier Examples, measurements updates for the
stochastic gyroscope drift are used. In order to benefit from
these updates, which are loosely-coupled updates (since they
rely on their calculations on GNSS position and velocity
readings), in addition to the benefits of tightly-coupled
integration, a hybrid loosely/tightly coupled solution is
proposed. This solution is suitable for downtown environ-
ments because of the long natural outages or degradation of
GNSS. The longer the outage, the benefit of the advanced
modeling of the gyroscope drift and its measurement update
is influential as demonstrated in Example 3 and Example 4.

When the availability and the quality of GNSS position
and velocity readings passes an assessment, loosely-coupled
measurement update is performed for position, velocity,
azimuth, and gyroscope drift. Each update can be performed
according to its own quality assessment of the update.
Whenever the testing procedure detects degraded GNSS
performance either because the visible satellite number falls
below four or because the GPS quality examination failed,
the filter can switch to a tightly-coupled update mode.
Furthermore, each satellite can be assessed independently of
the others to check whether it is adequate to use it for update.
This check again may exploit improved performance of the
Mixture PF with the ideas from Example 1 or Example 2,
together with the higher order AR modeling of the inertial
sensors’ drift, since these solutions may work unaided for
elongated periods with small degradation of performance.
Thus the pseudorange estimate for each visible satellite to
the receiver position estimated from the prediction phase of
the Mixture PF can compared to the measured one. If the
measured pseudorange of a certain satellite is too far off, this
is an indication of degradation (e.g. the presence of reflec-
tions with loss of direct line-of-sight), and this satellite’s
measurements can be discarded, while other satellites can be
used for the update.

Kingston Trajectory

A trajectory in Kingston area is presented in this Example
to demonstrate the performance of the proposed navigation
solution in environments encompassing several different
conditions, i.e. nearly open sky with some highway sections,
some rural sections, and an urban section but with open sky.
The road test was examined by testing simulated partial
outages. The used NovAtel OEM4 GPS receiver estimates
and provide the Ionospheric delay, the Tropospheric delay,
and the satellite clock correction. These corrections were
used to correct the pseudorange measurement before using
it in the measurement model. Furthermore, the receiver
provided the corrected satellite positions at its transmission
time, but seen at the ECEF frame at the receive time, so no
further corrections need to be implemented. These corrected
satellite positions were used in the measurement model.

In this trajectory, the inertial sensors used are from the
Crossbow IMU300CC-100 (see Table 15), the GPS receiver
used is the NovAtel OEM4. As mentioned earlier the speed
readings are collected from the vehicle odometer through
OBD-II. The reference solution used for assessment of the
results is a commercially available solution made by NovA-
tel, it is a SPAN unit integrating the high cost high end
tactical grade Honeywell HG1700 IMU (see Table 17) and
the NovAtel OEM4 dual frequency receiver.

The aim of the trajectory is to examine the performance
of the proposed navigation module utilizing a Mixture PF
for tightly-coupled 3D “reduced number of inertial sensors
with speed readings”/GPS integration and to compare it to
KF for tightly-coupled 3D “reduced number of inertial
sensors with speed readings”/GPS integration. This is
achieved by introducing simulated partial GPS outages in
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post-processing during portions of coverage with more than
three satellites, by removing some satellites. Each of these
outages is used four times with each of the two compared
solutions, once with 3 satellites visible, once with 2, then 1,
then 0. Having outages with O satellites visible is similar to
what happens in loosely-coupled integration. The errors in
both estimated solutions are calculated with respect to the
NovAtel reference solution.

FIG. 36 demonstrates the road test trajectory around the
Kingston area in Ontario, Canada. This trajectory has some
highway sections, as well as some rural and urban roadways.
In addition, the terrain varies with many hills and winding
turns. This road test was performed for nearly 75 minutes of
continuous vehicle navigation and a distance of around 77
km. Ten simulated GPS outages of 60 seconds each (shown
as circles overlaid on the map in FIG. 36) were introduced
such that they encompass all conditions of a typical trip
including straight portions, turns, slopes, high and slow
speeds.

The number of GPS satellites visible to the receiver all
over the trajectory is illustrated in FIG. 37.

Experimental Results

Table 13 demonstrates the maximum position error during
the 10 simulated outages with the number of satellites
varying from 3 to 1 for the two compared solutions (i.e.
Mixture PF with 3D “reduced number of inertial sensors
with speed readings™ and KF with 3D “reduced number of
inertial sensors with speed readings”). FIGS. 19 and 20
illustrate the average RMS and maximum position errors,
respectively, over the 10 simulated outages in each case (i.e.
for number of satellite visible equals 3, 2, 1, and 0).

The results in Table 13, as well as those in FIGS. 19 and
20 demonstrate the improved performance of Mixture PF
over KF in this integration problem. The main reason for this
are mainly because of the nonlinear capabilities of PF, which
enabled the use of a nonlinear system model including
advanced modeling of the gyroscope drift as well as the
nonlinear measurement model of the raw GPS measure-
ments without the need for approximations during linear-
ization. The enhancement of benefiting from more satellite
availability can also be seen from these results. The general
trend is that having three satellites visible is better than two
better than one and zero case. However, it should be noted
that when there is only one satellite available the results are
near (even sometimes worse) than the case with no satellites
available. This could be because of two combined reasons:
(1) the good performance of the 3D “reduced number of
inertial sensors with speed readings” solution even if it
works unaided for a period of time; and (ii) consequently the
uncertainty added by having one satellite available is some-
times worse than the 3D “reduced number of inertial sensors
with speed readings” performance, thus it cannot provide as
much aid to enhance the integrated performance but it rather
sometimes make it slightly worse.

These results also show that the improvement of perfor-
mance, due, in part, to the presence of three or two satellites
visible to the receiver over the scenarios where one or zero
satellites are available in the case of Mixture PF, may not be
as much as the improvement in the case of KF. This could
be because the 3D “reduced number of inertial sensors with
speed readings™ solution with the Mixture PF and higher
order AR model for the stochastic drift of the gyroscope
already has a very good performance even if it works
unaided (i.e. the case of loosely-coupled or zero satellites
visible).

To gain more insight about the performance of the two
compared filters as well as the different scenarios with
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different numbers of satellites visible to the receiver, the
details of two of these outages are discussed. FIGS. 40 and
43 show maps featuring the different compared solutions in
the portions of the trajectory during outages number 5 and
7, respectively. FIGS. 41 and 44 provide a zoom-in on the
maps towards the end of these outages, where the position
error is largest as compared to the whole outage duration. To
assess the vehicle dynamics during these two outages, FIGS.
23 and 26 illustrate the forward speed of the vehicle as well
as its azimuth angle both from the NovAtel reference
solution for the two outages discussed.

Outage 5 is an example of an outage with turns. As can be
seen from FIG. 42, it has a 50° turn followed by an elongated
curved road with azimuth change of about 70°. During the
first turn the vehicle is accelerating from a speed of about 65
km/h to a speed of 100 km/h, during the curved highway
section, the vehicle speeds varies between 100 and 110
km/h. Examining the maximum position error of the differ-
ent solutions during this outage, it can be seen that Mixture
PF had a 10 m error when three satellites where visible, 13.1
m for two satellites, 17.8 m for one satellite, and 15.5 m for
no satellites seen. KF had 13.75 m of error when three
satellites where visible, 19.4 m for two satellites, 56.3 m for
one satellite, and 57.5 m for no satellites seen. The KF
solution during this outage was worst when one or zero
satellites are visible to the receiver because of the high speed
and thus longer distance traveled, and as discussed in earlier
chapters any azimuth error is modulated by the speed when
contributing to the position error or in other words any
azimuth error will give more position error if the traversed
distance is more.

Outage 7 is an example of outages in a nearly straight road
with azimuth variation of only 3° as seen in FIG. 45, while
the forward speed varies between 81 and 88 km/h. Exam-
ining the maximum position error of the different solutions
during this outage, it can be seen that Mixture PF had a 4.9
m error when three satellites where visible, 10.3 m for two
satellites, 18.5 m for one satellite, and 18.45 m for no
satellites seen. KF had a 9.4 m error when three satellites
were visible, 10.24 m for two satellites, 33.4 m for one
satellite, and 33.6 m for no satellites seen. Again these
results show the benefit of having more satellites seen in a
partial outage over having no satellites at all as is the case
of loosely coupled integration.

Summary of the Results

The proposed navigation solution was tested with several
real road-test trajectories (one of which was presented
above) having open sky and 10 simulated GPS partial
outages of 60-second duration (which was repeated four
different times with intentionally limiting the satellites avail-
ability once to 3 satellites visible, once to 2 satellites, 1
satellite, and O satellites). The proposed solution based on
Mixture PF was compared to KF-based solution for the same
integration problem.

Results of the different trajectories tested demonstrate that
the average maximum error in horizontal positioning, the
Mixture PF solution achieved 47% improvement over KF
when three satellites are visible to the receiver, 57%
improvement when two satellites are visible, 67% improve-
ment when one satellite is visible, and 60% improvement
when no satellite is visible (which like the loosely-coupled
outages). Thus, the proposed navigation module pro-
grammed to use Mixture PF provides enhanced performance
when compared to its KF counterpart and showed good
performance for low cost MEMS-based inertial sensors/GPS
integration during GPS outages.
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Toronto Trajectory

A further road test trajectory in downtown Toronto,
Ontario, Canada presented here can be seen in FIG. 46. This
road test was performed for nearly 158 minutes of continu-
ous vehicle navigation and a distance of around 43.8 km was
traveled. This trajectory, which is in a downtown scenario
with urban canyons in some parts (this part of the trajectory
is shown in FIG. 47), has a lot of degraded GPS performance
because of either multipath, reflections with loss of direct
line-of-sight, or complete blockage. The portions with
degraded GPS performance encompass straight portions,
turns, and frequent stops.

In this trajectory, the inertial sensors used are from the
Crossbow IMU300CC-100, the GPS receiver used is the
NovAtel OEMV-1G, which is a single frequency receiver.
As mentioned earlier, this receiver tracks both GPS and
GLONASS satellites, but the work presented in this section
used only the GPS satellites. The number of all the satellites
and the GPS-only satellites visible to the receiver over the
whole trajectory duration are illustrated in FIG. 48 and FIG.
49, respectively. Even though the availability of the total
number of satellites visible to the receiver does not seem to
be very bad, these readings are contaminated with severe
effects of reflections with loss of direct line-of-sight in the
urban canyons. The specific satellites with bad measure-
ments are detected by the checking routine, as mentioned
earlier, and they are rejected from being used to update the
filter. Furthermore, GPS satellites are the only ones used in
this work, thus the availability of satellites is not very high
in canyons in the downtown area.

FIG. 50 show the receiver positioning results with its
degraded performance, the reference solution, and the pro-
posed navigation solution using Mixture PF for 3D “reduced
number of inertial sensors with speed readings/GPS inte-
gration with higher order AR modeling of the gyroscope
stochastic drift, automatic detection of GPS degraded per-
formance, switching between loosely and tightly coupled
schemes, and rejection of individual satellites when working
in tightly-coupled mode.

Although the trajectory has a large number of natural GPS
outages (partial or complete), Table 14 shows the RMS and
maximum position error during the long natural outages
whose duration exceeds 100 seconds for the Mixture PF
with 3D “reduced number of inertial sensors with speed
readings” solution. There are too many smaller natural
outages, but for the readability of the results only the longer
ones are presented. The performance during these worst
outages in the trajectory can be seen in FIG. 51. These
results show the performance of the proposed navigation
solution in a harsh environment with degraded GPS perfor-
mance in deep urban canyons because of either severe effect
of reflections with loss of direct line-of-sight or complete
blockage. There was only one outage that showed an
unusual performance worse than all the others; it can be seen
in the upper half of FIG. 51. But still all these results are very
competitive for low cost MEMS-based inertial sensors inte-
grated with GPS.

Example 6

Backward Smoothed Positioning and Orientation
Solution

This Example examines the use of backward smoothing
as a means of post-processing which is acceptable for
different applications such as mapping applications. Con-
trary to navigation, which requires a real time solution, the
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position and orientation of a mobile platform with an
imaging device can be achieved in post-processing to further
enhance positioning accuracy. The present Example assesses
a backward smoothed positioning solution for a moving
platform that can be used for applications, such as, for
example, mapping system using low-cost MEMS inertial
sensors, speed or velocity readings and GNSS.

As is known, not all the positioning techniques that apply
to KF-based smoothing apply to nonlinear smoothing.
Because a total-state approach can be used with the nonlin-
ear motion model itself as the system model, the appropriate
backward smoothing idea proposed in the present Example
is the known “TFS” approach. The forward filter is the
nonlinear filter that can be applied as detailed the previous
Examples. The backward filter proposed is not based on
using the inverse of the dynamic model to get the backward
transition, which is commonly done in existing smoothing
techniques. Exploiting the nature of the problem at hand,
which is 3D motion, the present navigation module attempts
to implement the backward filter through correctly trans-
forming mathematically all the sensor readings to have a
problem of a moving platform starting at the end of the
trajectory and proceeding towards the original start. Thus,
another instance of the forward filter with the same system
model (motion model) can be applied to the transformed
sensors data to provide the backward solution. The two
filters can then be blended together to give the smoothed
positioning solution.

The following is a description of the transformation
applied to the readings to have a scenario of a moving
platform starting at the end of the trajectory and proceeding
towards the original start. GNSS position is kept the same,
GNSS velocity components along North and East are
negated, but the vertical component is kept the same. The
platform speed readings derived from odometer or wheel
encoders or any other source are kept the same. The two
horizontal accelerometer readings are negated, and where a
vertical accelerometer is used, its reading is kept the same.
The wvertical gyroscope reading is compensated for the
component of the Earth rotation by subtracting the following
(w° sin ¢) where »* is the Earth rotation rate and ¢ is the
latitude, then it is negated, and this component is added once
again. If present, the barometer readings are kept the same.
Furthermore, if magnetometer readings are available, the
azimuth angle derived from the magnetometer readings is
transformed by adding 180 degrees to it. These newly
transformed readings are applied to another instance of the
program implementing the same forward filter and models,
thereby providing a backward filter solution. The backward
filter benefits from the information available for the forward
filter and then the two solutions are subsequently blended
together.

One benefit of the smoothed solution provided herein is
during GNSS outages where the positioning error grows.
Since the backward filter can make use of all the advantages
of'the forward filter, the final smoothed solution can improve
the forward solution alone and the performance of this
low-cost solution is closer to that of higher cost tactical
grade IMUs.

Experimental Results

The performance of the proposed backward smoothed
Mixture PF with 3D “reduced number of inertial sensors
with speed readings”/GPS integration module is examined
with a road test experiment in a land platform/vehicle. The
inertial sensors used are from two MEMS-grade IMUs: (i)
One is from Crossbow, model IMU300CC-100 (specifica-
tions of which are shown in Table 15); (ii) the second is from
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Analog Devices whose model is ADIS16405 (specifications
are shown in Table 16). The ADIS16405 IMU has in
addition to the three gyroscopes and three accelerometers,
three magnetometers which were not used in the results
presented in this example, only the inertial sensors were
used to generate the presented results. The forward speed
derived from the vehicle built-in sensors is collected through
the OBD II interface. Two GPS receivers were used in these
experiments for integration with the “reduced number of
inertial sensors with speed readings”, one is higher end and
the other is lower end: (i) the first is a high-end dual
frequency receiver, the NovAtel OEMV-3; (ii) the second is
the NovAtel OEMV-1G single frequency GPS receiver,
which is much lower-cost than the OEMV-3.

The specifications of the Honeywell IMU are illustrated in
Table 17. These high-end units were integrated using back-
ward smoothing through the Inertial Explorer software by
NovAtel, which solution provided the reference to validate
the proposed method and to examine the overall perfor-
mance during different conditions including degraded GPS
performance as well as some complete GPS blockages.
Houston Trajectory

This trajectory occurred in Houston, Tex., USA (FIG. 52).
The trajectory comprised a nearly open sky having some
blockages. The reference solution in this trajectory used the
NovAtel OEMV-3 receiver in Differential GPS (DGPS)
using GrafNav software by NovAtel and was integrated to
the high-end IMU using NovAtel’s Inertial Explorer. This
solution provided the reference to validate the proposed
method and to examine the overall performance during the
different conditions including some complete GPS block-
ages. The presented Mixture PF 3D “reduced number of
inertial sensors with speed readings”/GPS solution used
inertial sensors from the ADIS16405 IMU, and the NovAtel
OEMV-3 GPS receiver. This receiver was used once in
Single-Point GPS mode (SGPS) and it was also processed to
obtain Differential GPS (DGPS). The trajectory was run
twice once with SGPS and once with DGPS. When using the
SGPS, the proposed solution had an RMS position error of
1.21 m, an RMS pitch error of 0.27°, an RMS roll error of
0.17°, and an RMS azimuth error of 0.41°. When using the
DGPS the RMS position error dropped to 0.73 m. Three
portions of this trajectory that contain GPS blockages are
shown in FIG. 53, FIG. 54, and FIG. 55. FIG. 53 shows a
GPS outage on a road covered by dense trees. FIG. 54 shows
four blockages when moving around a building intentionally
at very slow speed, a typical scenario that can happen in
mapping applications. FIG. 55 illustrates a GPS outage
when passing under an overpass at a slow speed.

Toronto Trajectory

Another road test trajectory was carried out in Toronto,
Ontario, Canada, and is shown in FIG. 56. This road test was
performed for nearly 128 minutes of continuous vehicle
navigation and a distance of around 33.5 km was traveled.
This trajectory is a downtown scenario with urban canyons
in some parts and some underpasses. It had a lot of degraded
GPS performance because of either severe signal reflection
without a direct line of sight or complete blockage. The
portions with degraded GPS performance encompass
straight portions, turns, and frequent stops. In this trajectory,
the inertial sensors used are from the Crossbow IMU300CC-
100, the GPS receiver used in the results was the NovAtel
OEMV-1G. The reference solution integrated the NovAtel
OEM4 dual frequency GPS receiver with the high end
Honeywell HG1700 IMU (the specification of this IMU are
illustrated in Table 17) with backward smoothing using the
Inertial Explorer software by NovAtel. This solution pro-
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vided the reference to validate the proposed method and to
examine the overall performance during the different con-
ditions including degraded GPS performance as well as
some complete GPS blockages.

The proposed Smoothed Mixture PF solution had an RMS
position error of 5.78 m, an RMS pitch error of 0.29°, an
RMS roll error of 0.26°, and an RMS azimuth error of 3.12°.

FIGS. 57, 58, 59 show the smoothed reference, GPS, the
forward Mixture PF solution, and the backward smoothed
Mixture PF solution during sections of this trajectory with
urban canyons. The NovAtel OEMV-1G GPS receiver suf-
fered from severe multipath effects and from some complete
blockage during these urban canyons as demonstrated in
these figures. The forward Mixture PF solution still shows a
very competitive performance for a forward solution relying
on such low-cost inertial sensors (with gyroscope biases of
2°/sec) and with such severely degraded GPS. The smoothed
Mixture PF solution also demonstrates an improved perfor-
mance considering the specifications and the very low cost
of the sensors used.

FIGS. 60 and 61 show the smoothed reference, GPS, the
forward Mixture PF solution, and the backward smoothed
Mixture PF solution during two big underpasses in two
different portions under Gardiner Expressway, where the
GPS signal suffered from a complete blockage. Again, the
higher performance of the forward Mixture PF is demon-
strated which can be used for real-time navigation applica-
tions. Furthermore the smoothed Mixture PF solution shows
competitive performance.

The proposed Smoothed Mixture PF solution had an RMS
position error of 5.78 m, while the forward Mixture PF
solution had an error of 12.47 m. These results demonstrate
the competitive performance of both the forward Mixture PF
solution for real-time navigation and the backward
smoothed Mixture PF solution for applications with post-
processing given the quality and specifications of the sensors
used.

Example 7
Alignment Routine

This routine is meant to calculate the misalignment of the
frame of the sensor assembly with respect to the frame of the
moving platform.

This example is presenting the case of using the 3D
“reduced number of inertial sensors with speed readings™/
GNSS integration. When the sensor assembly is tethered to
the moving platform, one important misalignment compo-
nent is during the mounting of the horizontal axes of the
sensor assembly to be aligned with the horizontal axes of the
moving platform. To detect misalignment in the pitch direc-
tion, the following technique is used.

If GNSS is available with adequate accuracy (as assessed
by the technique described in Example 4), at time step k, an
estimate of the pitch angle from the upward velocity com-
ponent from GNSS and the overall platform forward speed
(from the source of speed readings such as, for example, an
odometer, or from the filter estimate such as from Example
1) is calculated as follows:
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If GNSS is interrupted (i.e. temporarily unavailable or
assessed and found inadequate) and a barometer is present,
the height difference from the barometer together with the
sampling time (of the barometer) At can be used to get an
estimate of the upward velocity, and consequently the pitch
angle can be calculated as follows:

Baro
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If GNSS is interrupted (i.e. temporarily unavailable or
assessed and found un-adequate) and a barometer is not used
or not present, this routine will not run at this time step k.

The above calculated pitch angle is the pitch angle of the
moving platform and does not suffer from the misalignment
under discussion.

The pitch angle derived from the accelerometer and
odometer (for example as calculated in Example 1) as per
the following equations:
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will be suffering from the misalignment in mounting the

sensor assembly including the accelerometers. Thus the

misalignment in pitch angle can be calculated as follows:
pkmisalign _ kaNSS_ e

Oor as:

misalign —, Baro_

Pr Pr Pr

It is to be noted that the above calculation can suffer from
noise, thus the outcome of which should be averaged over an
adequate number of time epochs to suppress noise and
obtain a better estimate of the pitch angle misalignment.

Example 8
Benchmarking Results

An open sky trajectory in Calgary, Alberta, Canada was
collected over a duration of 1.5 hours. The loosely coupled
scheme to integrate the “reduced number of inertial sensors
with speed readings” of Example 1 with a GPS receiver
using Mixture PF is the one used herein. The GNSS
degraded performance detection routine (of Example 4) was
enabled when generating these results and as per Example 3,
the long memory length AR model was used to model the
stochastic drift of the gyroscope, and the technique for
generating measurement update for this drift was used as
well.

The GPS receiver used is the u-Blox LEA-5T, which is a
low cost high sensitivity GPs receiver. The inertial sensors
used are from the ADIS 16405 IMU (Table 16). It is to be
noted that the magnetometers built-in with this IMU were
not used in these experiments. Furthermore, no barometer
was used in these experiments. The reference solution uses
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a high end navigational grade IMU from Honeywell called
CIMU, and a NovAtel OEM4 dual frequency GPS receiver,
and they are integrated and backward smoothed using the
Inertial Explorer Software by NovAtel.

Different randomly selected simulated GPS outages were
intentionally introduced by removing GPS data during these
portions. The outages durations used are 10 sec, 30 sec, 60
sec, 120 sec, 300 sec, 600 sec. For each one of these
durations, the trajectory was run several times so as the
number of outages for this same duration is more than 100
outages, the positioning results during these outages were
compared to a higher end navigational grade navigation
system used as the reference. The root mean square (RMS)
error and the maximum error in both horizontal position and
altitude are calculated. The results in Table 18 present the
average of the RMS and maximum errors for the >100
outages of each duration.

What is claimed is:

1. A method of producing a navigation solution for a
moving platform, the method comprising:

providing a processor for processing and filtering absolute

navigational information, sensor readings and substan-
tially uninterrupted speed information to produce the
navigation solution,

utilizing the speed information to decouple motion of the

platform from the sensor readings, and utilizing
advanced models of stochastic errors in the sensor
readings for producing the navigation solution.

2. The method of claim 1, further comprising utilizing a
state estimation technique.

3. The method of claim 2, wherein the state estimation
technique uses a system and measurement model.

4. The method of claim 2, wherein the state estimation
technique is non-linear.

5. The method of claim 2, wherein the state estimation
technique is linear.

6. The method of claim 1, wherein the method determines
the navigation solution by utilizing a loosely coupled or a
tightly coupled integration scheme.

7. The method of claim 6, wherein the absolute naviga-
tional information is GNSS information and the method
further comprising assessing the GNSS information and
detects degraded performance.

8. The method of claim 7, further comprising calculating
misalignment between a sensor assembly providing the
sensor readings and the platform.

9. The method of claim 8, further comprising performing
a backward smoothed solution subsequent to the navigation
solution and blending the two solutions to provide an
enhanced solution.

10. The method of claim 7, further comprising performing
a backward smoothed solution subsequent to the navigation
solution and blending the two solutions to provide an
enhanced solution.

11. The method of claim 7, further comprising automati-
cally switching between a loosely coupled integration
scheme and a tightly coupled integration scheme.

12. The method of claim 11, further comprising, in the
tightly coupled integration scheme, automatically assessing
the measurements from each GNSS satellite visible to a
receiver for receiving the absolute navigational information
and detecting degraded measurements.

13. The method of claim 12, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.
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14. The method of claim 12, further comprising calculat-
ing misalignment between a sensor assembly providing
sensor readings and the platform.

15. The method of claim 14, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

16. The method of claim 6, wherein the absolute naviga-
tional information is GNSS information and the method
further comprising in using the tightly coupled integration
scheme, further automatically assessing the measurements
from a GNSS satellite visible to a receiver and detecting
degraded measurements.

17. The method of claim 16, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

18. The method of claim 16, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

19. The method of claim 18, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

20. The method of claim 6, further comprising calculating
misalignment between a sensor assembly providing the
sensor readings and the platform.

21. The method of claim 20, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

22. The method of claim 6, further comprising performing
a backward smoothed solution subsequent to the navigation
solution and blending the two solutions to provide an
enhanced solution.

23. The method of claim 1, wherein the advanced models
of stochastic errors are non-linear or linear models with
increased memory length.

24. The method of claim 23, further comprising providing
additional measurement updates for the stochastic errors.

25. The method of claim 24, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

26. The method of claim 24, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

27. The method of claim 26, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

28. The method of claim 24, wherein the absolute navi-
gational information is GNSS information and the method
further comprising in using the tightly coupled integration
scheme, further automatically assessing the measurements
from a GNSS satellite visible to a receiver and detecting
degraded measurements.

29. The method of claim 28, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

30. The method of claim 28, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.
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31. The method of claim 30, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

32. The method of claim 24, wherein the absolute navi-
gational information is GNSS information and the method
further comprising assessing the GNSS information and
detects degraded performance.

33. The method of claim 32, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

34. The method of claim 32, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

35. The method of claim 34, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

36. The method of claim 32, further comprising automati-
cally switching between a loosely coupled integration
scheme and a tightly coupled integration scheme.

37. The method of claim 36, further comprising, in the
tightly coupled integration scheme, automatically assessing
the measurements from each GNSS satellite visible to a
receiver for receiving the absolute navigational information
and detecting degraded measurements.

38. The method of claim 37, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

39. The method of claim 37, further comprising calculat-
ing misalignment between a sensor assembly providing
sensor readings and the platform.

40. The method of claim 39, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

41. The method of claim 1, wherein the moving platform
is a vehicle.

42. The method of claim 41, wherein the vehicle is a
land-based vehicle.

43. The method of claim 42, wherein the vehicle is
wheel-based or track-based.

44. A navigation module for producing a navigation
solution for a moving platform, the module comprising:

a processor configured to receive absolute navigational
information, sensor readings, and substantially uninter-
rupted speed information and operative to integrate the
information and the readings to produce a navigation
solution, and

wherein the navigation solution uses the speed informa-
tion to decouple motion of the platform from the sensor
readings, wherein the processor is further programmed
to utilize advanced models of stochastic errors in the
sensor readings for producing the navigation solution.

45. The navigation module of claim 44, further compris-
ing a GNSS receiver to provide absolute navigational infor-
mation to the processor.

46. The navigation module of claim 45, wherein the
GNSS receiver is a Global Positioning System receiver.

47. The navigation module of claim 45, wherein the
absolute navigational information is degraded.

48. The navigation module of claim 44, further compris-
ing a sensor assembly to provide sensor readings to the
processor.
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49. The navigation module of claim 48, wherein the
sensor assembly comprises at least two accelerometers and
one gyroscope.
50. The navigation module of claim 44, further compris-
ing a source of speed information to provide speed infor-
mation to the processor.
51. The navigation module of claim 50, wherein the
source of speed information is an odometer.
52. The navigation module of claim 50, wherein the
source of speed information has a wired connection to the
module.
53. The navigation module of claim 50, wherein the
source of speed information has a wireless connection to the
module.
54. A method of producing a navigation solution for a
moving platform, the method comprising:
providing a processor for processing and filtering absolute
navigational information, sensor readings, and speed
information, wherein said speed information can be
interrupted, to produce the navigation solution, and

utilizing the speed information to decouple motion of the
platform from the sensor readings for producing the
navigation solution.

55. The method of claim 54, wherein the method deter-
mines the navigation solution by utilizing a loosely coupled
or a tightly coupled integration scheme.

56. The method of claim 55, further comprising utilizing
advanced models of stochastic errors in the sensor readings.

57. The method of claim 56, wherein the advanced models
of stochastic errors are non-linear or linear models with
increased memory length.

58. The method of claim 57, further comprising providing
additional measurement updates for the stochastic errors in
the sensor readings.

59. The method of claim 58, wherein the absolute navi-
gational information is GNSS information and the method
further comprising automatically assessing the GNSS infor-
mation and detecting degraded performance.

60. The method of claim 59, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

61. The method of claim 59, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

62. The method of claim 61, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

63. The method of claim 59, further comprising automati-
cally switching between a loosely coupled integration
scheme and a tightly coupled integration scheme.

64. The method of claim 63, further comprising, in the
tightly coupled scheme, automatically assessing the mea-
surements from each GNSS satellite visible to a receiver
receiving the absolute navigational information and detect-
ing degraded measurements.

65. The method of claim 64, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

66. The method of claim 64, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.
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67. The method of claim 66, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

68. The method of claim 58, wherein the absolute navi-
gational information is GNSS information and the method
further comprising, in the tightly coupled integration
scheme, automatically assessing the GNSS information
from a GNSS satellite visible to a receiver of the absolute
navigational information and detecting degraded measure-
ments.

69. The method of claim 68, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

70. The method of claim 68, further comprising calculat-
ing misalignment between a sensor assembly providing
sensor readings and the platform.

71. The method of claim 70, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

72. The method of claim 58, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

73. The method of claim 72, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

74. The method of claim 58, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

75. The method of claim 55, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

76. The method of claim 55, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

77. The method of claim 76, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

78. The method of claim 55, wherein the absolute navi-
gational information is GNSS information and the method
further comprising, in the tightly coupled integration
scheme, automatically assessing the GNSS information
from a GNSS satellite visible to a receiver of the absolute
navigational information and detecting degraded measure-
ments.

79. The method of claim 78, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

80. The method of claim 78, further comprising calculat-
ing misalignment between a sensor assembly providing
sensor readings and the platform.

81. The method of claim 80, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

82. The method of claim 55, wherein the absolute navi-
gational information is GNSS information and the method
further comprising automatically assessing the GNSS infor-
mation and detecting degraded performance.
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83. The method of claim 82, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

84. The method of claim 82, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

85. The method of claim 84, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

86. The method of claim 82, further comprising automati-
cally switching between a loosely coupled integration
scheme and a tightly coupled integration scheme.

87. The method of claim 86, further comprising, in the
tightly coupled scheme, automatically assessing the mea-
surements from each GNSS satellite visible to a receiver
receiving the absolute navigational information and detect-
ing degraded measurements.

88. The method of claim 87, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

89. The method of claim 87, further comprising calculat-
ing misalignment between a sensor assembly providing the
sensor readings and the platform.

90. The method of claim 89, further comprising perform-
ing a backward smoothed solution subsequent to the navi-
gation solution and blending the two solutions to provide an
enhanced solution.

91. The method of claim 54, wherein the moving platform
is a vehicle.

92. The method of claim 91, wherein the vehicle is a
land-based vehicle.

93. The method of claim 92, wherein the vehicle is
wheel-based or track-based.

94. The method of claim 54, further comprising using a
state estimation technique.

95. The method of claim 94, wherein the state estimation
technique uses a system and measurement model.

96. The method of claim 94, wherein the state estimation
technique is non-linear.

97. The method of claim 94, wherein the state estimation
technique is linear.

98. A navigation module for producing a navigation
solution for a moving platform, the module comprising:

a processor configured to receive absolute navigational
information, sensor readings, and speed information,
wherein said speed information can be interrupted, and
operative to integrate the information and the readings
to produce a navigation solution, and

wherein the navigation solution uses the speed informa-
tion to decouple motion of the platform from the sensor
readings.

99. The navigation module of claim 98, further compris-
ing a GNSS receiver for receiving the absolute navigational
information.

100. The navigation module of claim 99, wherein the
GNSS receiver is a Global Positioning System receiver.

101. The navigation module of claim 99, wherein the
absolute navigational information is degraded.

102. The navigation module of claim 98, further com-
prising a sensor assembly for providing the sensor readings,
the sensor assembly comprising three accelerometers and
three gyroscopes.
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103. The navigation module of claim 98, further com-
prising a source of speed information having a wired con-
nection to the module.

104. The navigation module of claim 98, further com-
prising a source of speed information having a wireless 5
connection to the module.
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